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368 Noetherian and artinian modules and rings

Further, )
o(P)o(w) = (m, DA WA)) = (lg ”f‘b"l"l%),

by definition of multiplication of matrices. But since 3% 1,7 i

follows that
a(@)o(w) = (1,dwA)= o(dY).

Therefore, o is a homomorphism.
To prove that o is injective, let a(¢) = (m;$4,) = 0. Then ,¢, J=q

1 < i,j < k. This implies £, 744, = 0. But since Ik, 7; = 1, we obtajp
¢4,=0,1sj=<kIna similar faghlc?n we get ¢ = 0, which proves thay o
is injective. To prove that o is surjective, letf=(f;) € T, where Vg M~
M, isan R-homomorphism. Set$ = 2, 4, f;7;. Then ® € Hom(xM, M)
By definition of o, o(¢) is the kX k matrix whose (s,2) entry g

(2, A fy7)A = for, because m,A, = J,,. Hence, 6(9) = (f,) = £ Thus,
o is also surjective. O

Problems
1. Let M= M, ® M, be the direct sum of simple modules M, and
M, such that M, # M,. Show that the ring Endz(M) is a direct
sum of division rings. [Hint: Homgz(M,,M,) = 0, etc.]
2. Let M= M, ® M, be the direct sum of isomorphic simple mod-
ules M, M,. Show that Endg(M) = D,, the 2 X 2 matrix ring
over a division ring.

2 Noetherian and artinian modules

Recall that an R-module M is finitely generated if M is generated by a
finite subset of M; that is, if there exist elements X{ 503 X,, € M such that
M= (x,,...,x,). This is equivalent to the statement: If M = SpeaM, isa
sum of submodules M, then there exists a finite subset A’ of A such that
M =3 e M,. We now define a concept that is dual to that of a finitely
generated module.

Deﬁpition. An R-module M is said to be finitely cogenerated if, for each
Jamily (M) e of submodules oM,

Ad;'-()=° r) Ad;'=0

a€ aEAN’
Jor some finite subset A’ of A.
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we show that finitely generated and finitely cogenerated modules can
ve characterized as modules that have certain chain conditions on their

supmodules-

ition. An R-module M is called noetherian (artinian) if for every
zig:lding (descending) sequence of R-submodules of M,

M;CM2CM3C"' M, DM,DM,D -+ )

there exists @ positive integer k such that
M=M= M= -

IfMis noetherian (artinian), then we also say that the ascending (descend-
ing) chain condition for submodules holds in M, or M has acc (dcc) on
submodules, or simply that M has acc (dcc).

Because the ring of integers Z is a principal ideal ring, any ascending
chain of ideals of Z is of the form

(mc@m)C(m)cC -,

where n,n,,n,,... are in Z. Because (n;) < (n; ;) implies n;, {|n;, any
ascending chain of ideals in Z starting with 7 can have at most n distinct
terms. This shows that Z as a Z-module is noetherian. But Z as a Z-
module has an infinite properly descending chain

(m>n)>(n3)>D -,

showing that Z is not artinian as a Z-module.
Before we give more examples, we prove two theorems providing us
with criteria for a module to be noetherian or artinian.

2.1 Theorem. For an R-module M the following are equivalent:

(i) M is noetherian.
(ii) Every submodule of M is finitely generated.
(i) Every nonempty set S of submodules of M has a maximal element
(that is, a submodule My in S such that for any submodule Ny in S
with Ny O M, we have Ny = M,).

Proof. (i) = (ii). Let N'be a submodule of M. Assume that N is not finitely
generated. For any positive integer k let @,,..,a, € N. Then N+
@,,...,;). Choose a,,, € N such that @, & (@, ,..,a). We then obtain
an infinite properly ascending chain

(@) ©(a,,8) € *** C(Ay1seenrBi) G (@1eens@rt) & °°°

S N—
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of submodules of M, which is a contradiction to the hypotheg;
is fini nerated. . '

is fzg;‘iy (?ﬁ) Let N, be an element of S. IfNyis not maximal, it jg Propey
contained in a submodule N, € S. If N, is not maximal, then, N, is DrOpY
erly contained in a submodule N, € S. In case S hag N0 maximg; ele.
ments, we obtain an infinite properly asqendmg chain of s“bmodules
NoC N,C N,C.--of M.Let N=U,N,. Nisalsoa submod.ule of M. Fo,
let x,y € U;N,and r € R. Then x € N, y € N,. Because either N, N

or N, C N,, both xand ylie in one submodule N, or N,, and, hence, . !
and rx lie in the same submodule. This implies x ~y € ¥ anq EN

and, hence, N is a submodule of M. By (ii) N is finitely generateq. So theré
exist elements a,,a,,...a,E N such that N=(q, 1@35:-44,). Now
a,,d,,...,a, belong to a finite number (< n) of submodules N,i= 12,

Hence, there exists N, such thatall a;, 1 <i < n, liein N,. BecauseNk CN
and N is the smallest submodule containing all a,, | < ; < 1, it follows

that N;, = N. But then N, = N, = -+, a contradiction, Thus, § muygt

have a maximal element.

(iii) = (i) Suppose we have an ascending sequence of submodules
of M,

5 Hence,

MICM2CM3 see.,

By (iii) the sequence M, M, Mj,... has a maximal element say M, . But
then M, = M, ,, = ---, Hence, M is noetherian. 0O

The next theorem is dual to Theorem 2.1.

2.2 Theorem. For an R-module M the Jollowing are equivalent:

(i) M is artinian.
(ii) Every quotient module of M is finitely cogenerated.
(iii) Every nonempty set S of submodules of M has a minimal element
(that is, a submodule My in S such that Jor any submodule N,in S
with NO - Mo, we have No = Mo).

Proof. The proof is similar (indeed dual) to the proof of Theorem 2.1 and
is thus left as an exercise, O

Definition. 4 ring R is called a left noetherian (artinian) ring if R regarded
as a left R-module is noetherian (artinian).

Similarly, we define right noetherian (artinian) rings.

Throughout, unless otherwise stated, by a noetherian (artinian) ring we
mean a left noetherian (artinian) ring,
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jmportan ]
fn vieW ngt:l}fel%iorems 2.1 and 2.2 for nngs as follows:
we I

selves’
Let R be a ring. Then the following are equivalent:

Noethe"'“

Theorem:

2.3 ' .
is noetherian (amman).

(i) (cogenerated). ' _ '
(iii) Every nonempty set S of left ideals ofRhasa maximal (minimal)

element.

[n particular, every principal left ideal ring is a noetherian ring.

24 Examples

(a)Let V'bean n-dimensional vector space over a field F. Then Visboth
noetherian and artinian. For, if W is a proper subspace of V, then dim
W < dim V = n. Thus any properly ascending (or descending) chain of

subspaces cannot have more than n + 1 terms.

(b)LetAbea finite-dimensional algebra with unity over a field F.Then
A asaring is both left and right noetherian as well as artinian. To see this,
let[A:F]=n.1fwe observe that each left or right ideal is a subspace of
A over F, it follows that any properly ascending (or descending) chain
cannot contain more than n + 1 terms.

In particular, (i) if G is a finite group and F a field, then the group
algebra F(G) is both a noetherian and an artinian ring; (i) the m X m
matrix ring F,, over a field Fis also a noetherian and artinian ring; (iii) the
ring of upper (as well as lower) triangular matrices over a field F is both
noetherian and artinian.
~ (c)LetR = F[x] bea polynomial ring over field Fin x. Because F[x]
is a principal ideal domain, it follows by Theorem 2.3 that F [x] is a
noetherian ring. But F[x] is not artinian, for there exists a properly de-

scending chain of ideals in R, namely,

RDORxDRx%D ***.

However, every proper homomorphic image R/A, where A is a nonzero
ideal in R, is artinian, because we know that R is a PID. Hence, A =
(p(x)), p(x)€ Flx]. Let p(x)=ao+ax + +++ +anx". Then
Ei[JQ/(pLx)_) is a finite-dimensional algebra over F with a basis
E'i ;‘:,...,x" 1}, Hence, by Example (b), R/4 = F[x]/(p(x)) is an artinian
nz_(ddi)nl;::l D,bethen X n matrix ring over adivision ring D. Then D,isan

ight 10 ailonal vector space over D, and each left ideal as well as each

eal of D,, is a subspace over D. Thus, any ascending or descending

ce of noetherian and artinian rings in them-

() R be any lef ideal of R Then A (R/A) is finitely generated

e
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in of left (as well as right) ideals cannot contain g,
f:r?;:; t?lfhus, (D,, is both noetherian and artinian ring, € thay, ny l
(¢) Let p be a prime number, and let

Osin;<l}

R-Z(p“)-{geQ

the ring where addition is modulo positive integers and myjg;
ibsetrivial; %hat is, ab = O for all a,b € R, Then ’ UItlphCathn
(i) Each ideal in R is of the form

1 2 pk—1
Ak-{F’F""’T’O ’

where k is some positive integer.
(i) R is artinian but not noetherian.

Solution. (i) Let A # (0) be any ideal of R,and let k be the smalj]
integer such that for some positive integer m, mipk & 4. Co
with i = k and (n, p) = 1. We assert that n/p' & A, Now n/
np'~*/p' = n/p*e A. Also, by choice of k, 1/p*~1c 4 R
we can find integers @ and b such that an+ bp =
1/p*~! € 4, we have that na/p* (reduced modul
bp/p* (reduced modulo whole numbers) lie in

contradiction. Thus, no n/p’, j = k, (n, p)

1 2 pk-1
A= {pk~1’pk—l""’ P 0}'

This ideal is denoted by 4,_,.

(iii) Because each idea] contains a finite number of elements, each

descending chain of ideals must be finite. Hence, R is artinian.
Clearly, the chain

A, CAyCcdyC -

es't Positiye
HSIder n / pl’

O whole numbers) and’
A. Hence, 1/pk€ 4,
=1 canliein 4, Hence,

isan infinite properly ascending chain of left ideals, showing that R is not

noetherian. Note that although each ideal 4 # R is finite and, hence,
finitely generated, R itself is not finitely generated.

L a
25  Theorem. Every submodule and every homomorphic image of
noetherian (artinian) module is noetherian (artinian).

Proof. Follows at once from Theorem 2.1 (Theorem 2.2). O
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26 Theorem. Let M be an R-.module. andlet N be

1;:{ Then M is noetherian (artini
noetherian (artinian).

i an R-submodule of
an) if and only if both N and Mj/N are

f. Let N and M/N be noetherian, and let K be any submodule of M.
Then (K + N)/Nis a submodule of M/N, and, hence, it is finitely gener-

ated (Theorem 2.1). But then (K + N)/N ~ K/(N N K) implies K/(NN
K) is finitely generated, say

=)+ + (X, Xe€

K
NNK
Then
Kﬂ(x;)+"'+(x,,,)+NﬂK, x;EK.

Further, because N is noetherian, its submodule N N K is finitely gener-
ated, say by ¥ ..., € NN K. This implies

K=x)+ - +x)+ @)+ - + ().

Hence, K is finitely generated, so M is noetherian. The converse is
Theorem 2.5. The proof for the artinian case is similar, 0O

NNK

An equivalent statement of Theorem 2.6 in the terminology of exact
sequences is as follows.

Let 0 — M, > M — M, — 0 be an exact sequence of R-modules.
Then M is noetherian (artinian) if and only if both M, and M, are noeth-
erian (artinian).

27 Theorem. A subring of a noetherian (artinian) ring need not be
noetherian (artinian).

Proof. For the artinian case the ring of rational numbers Q is an artinian
fing, but its subring Z is not an artinian ring.

For the noetherian case, the ring of 2 X 2 matrices over the rational
Mumbers Q is a noetherian ring, but its subring [% 3] is not noetherian -
that is, not left noetherian [see Example 2.15(¢)]. O

2:8 Theorem. Let R 1y 1 < i=n, bea family of noetherian (artz’niarf)
rlng?g each with q unity element. Then their direct sum R = @I, R, is
4gain noetherign (artinian).
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" We know that each left ideal 4 of R is of the fo
\I:;lot:ong,am leftidealsin R,. Soifa leftideal B =B, ® rm A, S)fR i
that 4 C B, then it is clear that 4, C B, 1 SisnH ence, ;n is sy,
ascending (descending) c{na_m of left ideals in R must be ﬁnitepgope"y
each R, is noetherian (artinian). O ecayg

29 Theorem. If J is a nil left ideal in an artinian ring R then 7.
nilpotent. J i

Proof. Suppose J* # (0) for any positive integer k. Consider 5 famj
{(J,J%,J3,...}. Because R is artinian, this family has a minima]l elementn;l
B=J7. Then B*=J*"C J™= B implies B2 = B. Consiqe, anothes
family

F = (4|4 is a left ideal contained in B with B4 (0)).

Then & # @ because B € #. Let 4 be a minima] element in &, Tpey,
BA # (0). This implies there exists an element a € 4 such that Ba+,
But Ba C 4 and B(Ba) = B2a = Ba + 0. Thus, Ba € #%. Hence, by minj.
mality of 4, Ba = A. This gives that there exists an element b € B such
that ba = q. Thisimplies bia = a forall positive integers i, But because bis

a nilpotent element, this implies =0, a contradiction. Therefore, for
some positive integer k, J* = (0). O

210 Lemma. Let R be q noetherian ring. Then the sum of nilpotent
ideals in R is a nilpotent ideal.

Proof Let B= 3, , A, be the sum of nilpotent ideals in R. Because R is
noetherian (i.e., left noetherian), B is finitely generated as a left ideal.
Suppose B = (x,,...,x,,). Then each x; lies in the sum of ﬁnitely,many
4;’s. Hence, B is contained in the sum of a finite number of A4s, say
(after reindexing if necessary) A,,..., A,. Thus, B= A, + -+ + 4,. Then
by Problem 1 of Section 5 in Chapter 10, B is nilpotent. O

Recall that if S is any nonempty subset of a rin.g R, the;';(i) -
{x € R|xS = 0} is a left ideal of R called the left annihilator of S in K.

, . /Ipotent
2.11  Theorem. Let R be a noetherian ring having no nonzero nip
ideals. Then R has no nonzero nil ideals.

# 0) bed
Proof. Let N be a nonzero nil ideal in R. Let & = (l(fl)ln ; III\;’S'; maxim
family of left annihilator ideals. Because R is noetherian,
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ber, say /(n). Let X € R. Then nx € N, so there exists a smallest
I%Z?tlive integer k such thakt_(lnx)k =0. Now, clearly, I(n) = I((nx)=1),
Because ()1 # 0, l((nx)*" e F. But then by maximality of I(n),
i) = ()" ™). Now

(nx)* = 0=>nxel((nx)*"!) = I(n)=>nxn = 0,

Now (RnR)* = RnRRnR =0. Therefore, by hypothesis, RnR = 0, If

| € R, then n = 0, acontradiction. So in this case we are done. Otherwise,

consider the ideal (n) = nR + Rn + RnR + nZ generated by n. Set 4 =
nR + Rn. Because nxn =0, for all x € R, 42 =), Thus, (n) = A + nZ.

But then if n* =0, we have (4 + nZ)x =0, Therefore, by hypothesis,

A+ nZ = 0, which gives n = 0, a contradiction. Hence, R has no nonzero
nil ideals. O

Remark. Indeed, one can similarly show that R has n
left nil ideals.

Next we show that a nil ideal in a noetherian ring is nilpotent,

0 nonzero right or

212 Theorem. Let N be a nil ideal in a noetherian ring R. Then N is
nilpotent.

Proof. Let T'be the sum of nilpotent ideals in R. Then R/Thas no nonzero
nilpotent ideals, for if 4/7 is nilpotent, then (4/T)"=(0) implies
A"/T = (0); so A™ C T. But since, by Lemma 2.10, T is nilpotent, there
exists a positive integer k such that (A4™)* = (0). Hence, A itself is nilpo-
tent, so A C T. This implies 4/T = (0).

Consider the nil ideal (N + T)/Tin R/T. By Theorem 2.1 ,(N+T)

= (0). This implies N C T, which is a nilpotent ideal. Hence, Nis nilpo-
tent, O

113 Remark. IfR is an artinian ring with identity, then it is known that
R is noetherign,

214

™ Theorem (Hilbert basis theorem). Let R be a noetherian ring.
en th

e polynomial ring R[x] is also a noetherian ring.

790/ Let. & and % be the families of left ideals of R and R[], respec-
w;eey' Let n be a nonnegative integer. Define a mapping ¢,: ¥ — &,
Ie

¢a(l) = {acR|3ax" + bx"~! + ---el,a # 0} U {0}.
ltis eagy 1o verify that ¢,(I) € &. We claim thatif /,J € ¥’ with I C Jand
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¢,(I)=¢,(J) for all n =0, then I=J. Let 0 *f(x) e J be of
Because ¢,,(1) = ¢,,(J), there exists 8m(X) € I'withleading coe
same as that of f(x), and f(x) — g,,(x) is either 0 or of degree a¢ -
m — 1. Suppose f(x) — g,(x) # 0. Because f(x) — &m(X) € J, we can sim;.
larly find g,,—,(x) € I'such that f(x) — &m(X) ~ Em- ,(x). € Jand is ¢ ther
or of degree at most m — 2. Continuing like this, we arrive, after at Most
steps, at

JX) = 8m(X) = gm—y(X) = *++ — gi(x) =0,
where g,,(x), g, (x),... € I. But then f(x) € I, which provesthat ] = j o
claimed. .
Letd4, C 4, C A4, C -+ beanascending sequence of left ideals of R[x],
Then for each nonnegative integer »,

®,(4,) C d,(4,) C Dn(4;) C -

is an ascending sequence of left ideals of R; hence, there exists a positive
integer k(n) such that

¢’n(Ak(n)) = ¢n(Ak(n)+1) = (1)

Further, because R is noetherian, the collection of left ideals (D,(4)),
n€ N, i € N, has a maximal element, say ¢,(4,) (Theorem 2.3). Then

$p(d)) = b,(4,)  (forall n = p)
= qb,,(Aj) (foralln=p, j= Q).

Therefore, we may choose k(n)=q for all n= p in (1). Moreover, if
§=k(1) +-- k(p — 1)g, then ¢n(As) = ¢n(As+l) = -+ for all n€N.
Hence, by the result proved in the first paragraph, A=A, =
Therefore, R[x] is noetherian. [

de.gl‘ee m,
fficient the

2.15 Examples

(a) If R is noetherian, then each ideal contains a finite product of prime
ideals,

Solution. Suppose that the family & of ideals in R that do not contain any
product of prime ideals is nonempty. Then by Theorem 2.3, # has a
maximal element, say 4. Because 4 € &, A is not a prime ideal. Hence,

there exist ideals B and C of R such that BCC 4, but B¢ 4, CE 4.
Consider

(B+AXC+A4)CBC+BA+AC+ A2C A.
Because, B+ 42 4, and C+ 4 D 4, both B+ 4 and C + A contain a



