Further,

$$\sigma(\phi)\sigma(\psi) = (\pi_i\phi\lambda_i)(\pi_i\psi\lambda_j) = \left(\sum_{l=1}^k \pi_i\phi\lambda_l\pi_l\psi\lambda_j\right),$$

by definition of multiplication of matrices. But since $\sum_{i=1}^{k} \lambda_i \pi_i = 1$, it follows that

$$\sigma(\phi)\sigma(\psi) = (\pi_i\phi\psi\lambda_j) = \sigma(\phi\psi).$$

Therefore, σ is a homomorphism.

To prove that σ is injective, let $\sigma(\phi) = (\pi_i \phi \lambda_j) = 0$. Then $\pi_i \phi \lambda_j = 0$, $1 \le i, j \le k$. This implies $\sum_{i=1}^k \pi_i \phi \lambda_j = 0$. But since $\sum_{i=1}^k \pi_i = 1$, we obtain $\phi \lambda_j = 0$, $1 \le j \le k$. In a similar fashion we get $\phi = 0$, which proves that σ is injective. To prove that σ is surjective, let $f = (f_{ij}) \in T$, where $f_{ij} : M_j \to M_i$ is an R-homomorphism. Set $\phi = \sum_{i,j} \lambda_i f_{ij} \pi_j$. Then $\phi \in \text{Hom}_R(M,M)$. By definition of σ , $\sigma(\phi)$ is the $k \times k$ matrix whose (s,t) entry is $\pi_s(\sum_{i,j} \lambda_i f_{ij} \pi_j) \lambda_t = f_{st}$, because $\pi_p \lambda_q = \delta_{pq}$. Hence, $\sigma(\phi) = (f_{st}) = f$. Thus, σ is also surjective. \square

Problems

1. Let $M = M_1 \oplus M_2$ be the direct sum of simple modules M_1 and M_2 such that $M_1 \neq M_2$. Show that the ring $\operatorname{End}_R(M)$ is a direct sum of division rings. [Hint: $\operatorname{Hom}_R(M_1, M_2) = 0$, etc.]

2. Let $M = M_1 \oplus M_2$ be the direct sum of isomorphic simple modules M_1 , M_2 . Show that $\operatorname{End}_R(M) \simeq D_2$, the 2×2 matrix ring over a division ring.

2 Noetherian and artinian modules

Recall that an R-module M is finitely generated if M is generated by a finite subset of M; that is, if there exist elements $x_1,...,x_n \in M$ such that $M = (x_1,...,x_n)$. This is equivalent to the statement: If $M = \sum_{\alpha \in \Lambda} M_{\alpha}$ is a sum of submodules M_{α} then there exists a finite subset Λ' of Λ such that $M = \sum_{\alpha \in \Lambda'} M_{\alpha}$. We now define a concept that is dual to that of a finitely generated module.

Definition. An R-module M is said to be finitely cogenerated if, for each family $(M_{\alpha})_{\alpha \in \Lambda}$ of submodules of M,

$$\bigcap_{\alpha\in\Lambda}M_\alpha=0\Rightarrow\bigcap_{\alpha\in\Lambda'}M_\alpha=0$$

for some finite subset Λ' of Λ .

We show that finitely generated and finitely cogenerated modules can be characterized as modules that have certain chain conditions on their submodules.

Definition. An R-module M is called noetherian (artinian) if for every ascending (descending) sequence of R-submodules of M,

$$M_1 \subset M_2 \subset M_3 \subset \cdots \qquad (M_1 \supset M_2 \supset M_3 \supset \cdots),$$

there exists a positive integer k such that

$$M_k = M_{k+1} = M_{k+2} = \cdots$$

If M is noetherian (artinian), then we also say that the ascending (descending) chain condition for submodules holds in M, or M has acc (dcc) on submodules, or simply that M has acc (dcc).

Because the ring of integers Z is a principal ideal ring, any ascending chain of ideals of Z is of the form

$$(n) \subset (n_1) \subset (n_2) \subset \cdots,$$

where n, n_1, n_2, \ldots are in **Z**. Because $(n_i) \subseteq (n_{i+1})$ implies $n_{i+1} | n_i$, any ascending chain of ideals in **Z** starting with n can have at most n distinct terms. This shows that **Z** as a **Z**-module is noetherian. But **Z** as a **Z**-module has an infinite properly descending chain

$$(n) \supset (n^2) \supset (n^3) \supset \cdots$$

showing that Z is not artinian as a Z-module.

Before we give more examples, we prove two theorems providing us with criteria for a module to be noetherian or artinian.

2.1 Theorem. For an R-module M the following are equivalent:

- (i) M is noetherian.
- (ii) Every submodule of M is finitely generated.
- (iii) Every nonempty set S of submodules of M has a maximal element (that is, a submodule M_0 in S such that for any submodule N_0 in S with $N_0 \supset M_0$ we have $N_0 = M_0$).

Proof. (i) \Rightarrow (ii). Let N be a submodule of M. Assume that N is not finitely generated. For any positive integer k let $a_1,...,a_k \in N$. Then $N \neq (a_1,...,a_k)$. Choose $a_{k+1} \in N$ such that $a_{k+1} \notin (a_1,...,a_k)$. We then obtain an infinite properly ascending chain

$$(a_1) \subsetneq (a_1, a_2) \subsetneq \cdots \subsetneq (a_1, ..., a_k) \subsetneq (a_1, ..., a_{k+1}) \subsetneq \cdots$$

of submodules of M, which is a contradiction to the hypothesis. Hence, N

is finitely generated.

- finitely generated.

 (ii) \Rightarrow (iii) Let N_0 be an element of S. If N_0 is not maximal, it is properly contained in a submodule $N_1 \in S$. If N_1 is not maximal, then N_1 is prop. erly contained in a submodule $N_2 \in S$. In case S has no maximal elements, we obtain an infinite properly ascending chain of submodules $N_0 \subset N_1 \subset N_2 \subset \cdots$ of M. Let $N = \bigcup_i N_i$. N is also a submodule of M. For let $x, y \in \bigcup_i N_i$ and $r \in R$. Then $x \in N_u$, $y \in N_v$. Because either $N_u \subset N_v$ or $N_v \subset N_u$, both x and y lie in one submodule N_u or N_v , and, hence, x-yand rx lie in the same submodule. This implies $x - y \in N$ and $rx \in N$, and, hence, N is a submodule of M. By (ii) N is finitely generated. So there exist elements $a_1, a_2, ..., a_n \in N$ such that $N = (a_1, a_2, ..., a_n)$. Now $a_1, a_2, ..., a_n$ belong to a finite number ($\leq n$) of submodules N_i , i = 1, 2, ...Hence, there exists N_k such that all a_i , $1 \le i \le n$, lie in N_k . Because $N_k \subset N$ and N is the smallest submodule containing all a_i , $1 \le i \le n$, it follows that $N_k = N$. But then $N_k = N_{k+1} = \cdots$, a contradiction. Thus, S must have a maximal element.
- (iii) ⇒ (i) Suppose we have an ascending sequence of submodules of M,

$$M_1 \subset M_2 \subset M_3 \cdots$$

By (iii) the sequence $M_1, M_2, M_3, ...$ has a maximal element say M_k . But then $M_k = M_{k+1} = \cdots$. Hence, M is noetherian. \square

The next theorem is dual to Theorem 2.1.

- Theorem. For an R-module M the following are equivalent: 2.2
 - (i) M is artinian.

(ii) Every quotient module of M is finitely cogenerated.

(iii) Every nonempty set S of submodules of M has a minimal element (that is, a submodule M_0 in S such that for any submodule N_0 in Swith $N_0 \subset M_0$, we have $N_0 = M_0$).

Proof. The proof is similar (indeed dual) to the proof of Theorem 2.1 and is thus left as an exercise.

Definition. A ring R is called a left noetherian (artinian) ring if R regarded as a left R-module is noetherian (artinian).

Similarly, we define right noetherian (artinian) rings.

Throughout, unless otherwise stated, by a noetherian (artinian) ring we mean a left noetherian (artinian) ring.

Noetherian and artinian modules In view of the importance of noetherian and artinian rings in them-In view of the Theorems 2.1 and 2.2 for rings as follows: selves, we rewrite Theorems 2.1 and 2.2 for rings as follows:

Theorem. Let R be a ring. Then the following are equivalent: 2.3

(i) R is noetherian (artinian). Let A be any left ideal of R. Then A(R/A) is finitely generated

(ii)

Every nonempty set S of left ideals of R has a maximal (minimal) (iii) element.

In particular, every principal left ideal ring is a noetherian ring.

Examples

(a) Let V be an n-dimensional vector space over a field F. Then V is both noetherian and artinian. For, if W is a proper subspace of V, then dim $W < \dim V = n$. Thus any properly ascending (or descending) chain of subspaces cannot have more than n+1 terms.

(b) Let A be a finite-dimensional algebra with unity over a field F. Then A as a ring is both left and right noetherian as well as artinian. To see this, let [A:F] = n. If we observe that each left or right ideal is a subspace of A over \vec{F} , it follows that any properly ascending (or descending) chain

cannot contain more than n+1 terms.

In particular, (i) if G is a finite group and F a field, then the group algebra F(G) is both a noetherian and an artinian ring; (ii) the $m \times m$ matrix ring F_m over a field F is also a noetherian and artinian ring; (iii) the ring of upper (as well as lower) triangular matrices over a field F is both noetherian and artinian.

(c) Let R = F[x] be a polynomial ring over a field F in x. Because F[x]is a principal ideal domain, it follows by Theorem 2.3 that F[x] is a noetherian ring. But F[x] is not artinian, for there exists a properly descending chain of ideals in R, namely,

$R \supset Rx \supset Rx^2 \supset \cdots$

However, every proper homomorphic image R/A, where A is a nonzero ideal in R, is artinian, because we know that R is a PID. Hence, A = $p(x) = a_0 + a_1 x + \cdots + a_n x^n.$ Let F[x]/(p(x)) is a finite-dimensional algebra over F with a basis $\{\overline{1},\overline{x},...,\overline{x}^{n-1}\}$. Hence, by Example (b), R/A=F[x]/(p(x)) is an artinian ring.

(d) Let D_n be the $n \times n$ matrix ring over a division ring D. Then D_n is an n^2 -dimensional vector space over D, and each left ideal as well as each right ideal of D_n is a subspace over D. Thus, any ascending or descending chain of left (as well as right) ideals cannot contain more than $n^2 + 1$

(e) Let p be a prime number, and let

$$R = \mathbb{Z}(p^{\infty}) = \left\{ \frac{m}{p^n} \in \mathbb{Q} \middle| 0 \le \frac{m}{p^n} < 1 \right\}$$

be the ring where addition is modulo positive integers, and multiplication ab = 0 for all $a, b \in R$. Then (i) Each ideal in R is of the form

$$A_k = \left\{ \frac{1}{p^k}, \frac{2}{p^k}, \dots, \frac{p^k - 1}{p^k}, 0 \right\},$$

where k is some positive integer.

(ii) R is artinian but not noetherian.

Solution. (i) Let $A \neq (0)$ be any ideal of R, and let k be the smallest positive integer such that for some positive integer m, $m/p^k \notin A$. Consider n/p^k with $i \ge k$ and (n, p) = 1. We assert that $n/p^i \notin A$. Now $n/p^i \in A$ implies $np^{i-k}/p^i = n/p^k \in A$. Also, by choice of k, $1/p^{k-1} \in A$. Because (n, p) = 1, we can find integers a and b such that an + bp = 1. Then from n/p^k , $1/p^{k-1} \in A$, we have that na/p^k (reduced modulo whole numbers) and bp/p^k (reduced modulo whole numbers) lie in A. Hence, $1/p^k \in A$, a contradiction. Thus, no n/p^i , $i \ge k$, (n, p) = 1 can lie in A. Hence,

$$A = \left\{ \frac{1}{p^{k-1}}, \frac{2}{p^{k-1}}, \dots, \frac{p^{k-1}-1}{p^{k-1}}, 0 \right\}.$$

This ideal is denoted by A_{k-1} .

(iii) Because each ideal contains a finite number of elements, each descending chain of ideals must be finite. Hence, R is artinian. Clearly, the chain

$$A_1 \subset A_2 \subset A_3 \subset \cdots$$

is an infinite properly ascending chain of left ideals, showing that R is not noetherian. Note that although each ideal $A \neq R$ is finite and, hence, finitely generated, R itself is not finitely generated.

2.5 Theorem. Every submodule and every homomorphic image of a noetherian (artinian) module is noetherian (artinian).

Proof. Follows at once from Theorem 2.1 (Theorem 2.2).

Theorem. Let M be an R-module, and let N be an R-submodule of M. Then M is noetherian (artinian) if and only if both N and M/N are noetherian (artinian).

Proof. Let N and M/N be noetherian, and let K be any submodule of M. Then (K+N)/N is a submodule of M/N, and, hence, it is finitely generated (Theorem 2.1). But then $(K+N)/N \simeq K/(N\cap K)$ implies $K/(N\cap K)$ is finitely generated, say

$$\frac{K}{N\cap K} = (\bar{x}_1) + \cdots + (\bar{x}_m), \quad \bar{x}_i \in \frac{K}{N\cap K}.$$

Then

$$K = (x_1) + \cdots + (x_m) + N \cap K, \quad x_i \in K.$$

Further, because N is noetherian, its submodule $N \cap K$ is finitely generated, say by $y_1, ..., y_n \in N \cap K$. This implies

$$K = (x_1) + \cdots + (x_m) + (y_1) + \cdots + (y_n).$$

Hence, K is finitely generated, so M is noetherian. The converse is Theorem 2.5. The proof for the artinian case is similar. \square

An equivalent statement of Theorem 2.6 in the terminology of exact sequences is as follows.

Let $0 \to M_1 \to M \to M_2 \to 0$ be an exact sequence of R-modules. Then M is noetherian (artinian) if and only if both M_1 and M_2 are noetherian (artinian).

2.7 Theorem. A subring of a noetherian (artinian) ring need not be noetherian (artinian).

Proof. For the artinian case the ring of rational numbers Q is an artinian ring, but its subring Z is not an artinian ring.

For the noetherian case, the ring of 2×2 matrices over the rational numbers Q is a noetherian ring, but its subring $\begin{bmatrix} z & Q \\ 0 & Z \end{bmatrix}$ is not noetherian that is, not left noetherian [see Example 2.15(e)].

Theorem. Let R_i , $1 \le i \le n$, be a family of noetherian (artinian) rings each with a unity element. Then their direct sum $R = \bigoplus \sum_{i=1}^{n} R_i$ is again noetherian (artinian).

Proof. We know that each left ideal A of R is of the form $A_1 \oplus ... \oplus A_n$, where A_i are left ideals in R_i . So if a left ideal $B = B_1 \oplus ... \oplus B_n$ of R is such that $A \subset B$, then it is clear that $A_i \subset B_i$, $1 \le i \le n$. Hence, any properly each R_i is noetherian (artinian). \square

2.9 Theorem. If J is a nil left ideal in an artinian ring R, then J is nilpotent.

Proof. Suppose $J^k \neq (0)$ for any positive integer k. Consider a family $\{J, J^2, J^3, \ldots\}$. Because R is artinian, this family has a minimal element, say $B = J^m$. Then $B^2 = J^{2m} \subset J^m = B$ implies $B^2 = B$. Consider another family

 $\mathcal{F} = \{A | A \text{ is a left ideal contained in } B \text{ with } BA \neq (0)\}.$

Then $\mathscr{F} \neq \emptyset$ because $B \in \mathscr{F}$. Let A be a minimal element in \mathscr{F} . Then $BA \neq (0)$. This implies there exists an element $a \in A$ such that $Ba \neq 0$. But $Ba \subset A$ and $B(Ba) = B^2a = Ba \neq 0$. Thus, $Ba \in \mathscr{F}$. Hence, by minimality of A, Ba = A. This gives that there exists an element $b \in B$ such that ba = a. This implies $b^ia = a$ for all positive integers i. But because b is a nilpotent element, this implies a = 0, a contradiction. Therefore, for some positive integer k, $J^k = (0)$. \square

2.10 Lemma. Let R be a noetherian ring. Then the sum of nilpotent ideals in R is a nilpotent ideal.

Proof. Let $B = \sum_{i \in A} A_i$ be the sum of nilpotent ideals in R. Because R is noetherian (i.e., left noetherian), B is finitely generated as a left ideal. Suppose $B = (x_1, \ldots, x_m)$. Then each x_i lies in the sum of finitely many A_i 's. Hence, B is contained in the sum of a finite number of A_i 's, say (after reindexing if necessary) A_1, \ldots, A_n . Thus, $B = A_1 + \cdots + A_n$. Then by Problem 1 of Section 5 in Chapter 10, B is nilpotent. \square

Recall that if S is any nonempty subset of a ring R, then $l(S) = \{x \in R | xS = 0\}$ is a left ideal of R called the *left annihilator* of S in R.

2.11 Theorem. Let R be a noetherian ring having no nonzero nilpotent ideals. Then R has no nonzero nil ideals.

Proof. Let N be a nonzero nil ideal in R. Let $\mathcal{F} = \{l(n) | n \in \mathbb{N}, n \neq 0\}$ be a family of left annihilator ideals. Because R is noetherian, \mathcal{F} has a maximal

member, say l(n). Let $x \in R$. Then $nx \in N$, so there exists a smallest positive integer k such that $(nx)^k = 0$. Now, clearly, $l(n) \subset l((nx)^{k-1})$. Because $(nx)^{k-1} \neq 0$, $l((nx)^{k-1}) \in \mathscr{F}$. But then by maximality of l(n), $l(n) = l((nx)^{k-1})$. Now

$$(nx)^{k} = 0 \Rightarrow nx \in l((nx)^{k-1}) = l(n) \Rightarrow nxn = 0.$$

Now $(RnR)^2 = RnRRnR = 0$. Therefore, by hypothesis, RnR = 0. If $1 \in R$, then n = 0, a contradiction. So in this case we are done. Otherwise, consider the ideal (n) = nR + Rn + RnR + nZ generated by n. Set A = nR + Rn. Because nxn = 0, for all $x \in R$, $A^2 = 0$. Thus, (n) = A + nZ. But then if $n^k = 0$, we have $(A + nZ)^k = 0$. Therefore, by hypothesis, A + nZ = 0, which gives n = 0, a contradiction. Hence, R has no nonzero nil ideals. \square

Remark. Indeed, one can similarly show that R has no nonzero right or left nil ideals.

Next we show that a nil ideal in a noetherian ring is nilpotent.

2.12 Theorem. Let N be a nil ideal in a noetherian ring R. Then N is nilpotent.

Proof. Let T be the sum of nilpotent ideals in R. Then R/T has no nonzero nilpotent ideals, for if A/T is nilpotent, then $(A/T)^m = (0)$ implies $A^m/T = (0)$; so $A^m \subset T$. But since, by Lemma 2.10, T is nilpotent, there exists a positive integer k such that $(A^m)^k = (0)$. Hence, A itself is nilpotent, so $A \subset T$. This implies A/T = (0).

Consider the nil ideal (N+T)/T in R/T. By Theorem 2.11, (N+T)/T=(0). This implies $N \subset T$, which is a nilpotent ideal. Hence, N is nilpotent. \square

- 2.13 Remark. If R is an artinian ring with identity, then it is known that R is noetherian.
- 2.14 Theorem (Hilbert basis theorem). Let R be a noetherian ring. Then the polynomial ring R[x] is also a noetherian ring.

Proof. Let \mathcal{F} and \mathcal{F}' be the families of left ideals of R and R[x], respectively. Let n be a nonnegative integer. Define a mapping $\phi_n: \mathcal{F}' \to \mathcal{F}$, where

$$\phi_n(I) = \{a \in R \mid \exists ax^n + bx^{n-1} + \dots \in I, a \neq 0\} \cup \{0\}.$$

It is easy to verify that $\phi_n(I) \in \mathcal{F}$. We claim that if $I, J \in \mathcal{F}'$ with $I \subset J$ and

 $\phi_n(I) = \phi_n(J)$ for all $n \ge 0$, then I = J. Let $0 \ne f(x) \in J$ be of degree m. Because $\phi_m(I) = \phi_m(J)$, there exists $g_m(x) \in I$ with leading coefficient the same as that of f(x), and $f(x) - g_m(x)$ is either 0 or of degree at most m-1. Suppose $f(x) - g_m(x) \ne 0$. Because $f(x) - g_m(x) \in J$, we can similarly find $g_{m-1}(x) \in I$ such that $f(x) - g_m(x) - g_{m-1}(x) \in J$ and is either 0 or of degree at most m-2. Continuing like this, we arrive, after at most m steps, at

$$f(x) - g_m(x) - g_{m-1}(x) - \cdots - g_i(x) = 0,$$

where $g_m(x), g_{m-1}(x), ... \in I$. But then $f(x) \in I$, which proves that I = J, as claimed.

Let $A_1 \subset A_2 \subset A_3 \subset \cdots$ be an ascending sequence of left ideals of R[x]. Then for each nonnegative integer n,

$$\phi_n(A_1) \subset \phi_n(A_2) \subset \phi_n(A_3) \subset \cdots$$

is an ascending sequence of left ideals of R; hence, there exists a positive integer k(n) such that

$$\phi_n(A_{k(n)}) = \phi_n(A_{k(n)+1}) = \cdots$$
 (1)

Further, because R is noetherian, the collection of left ideals $(\phi_n(A_i))$, $n \in \mathbb{N}$, $i \in \mathbb{N}$, has a maximal element, say $\phi_p(A_q)$ (Theorem 2.3). Then

$$\phi_p(A_q) = \phi_n(A_q) \qquad \text{(for all } n \ge p)$$

$$= \phi_n(A_j) \qquad \text{(for all } n \ge p, j \ge q).$$

Therefore, we may choose k(n) = q for all $n \ge p$ in (1). Moreover, if $s = k(1) \cdots k(p-1)q$, then $\phi_n(A_s) = \phi_n(A_{s+1}) = \cdots$ for all $n \in \mathbb{N}$. Hence, by the result proved in the first paragraph, $A_s = A_{s+1} = \cdots$. Therefore, R[x] is noetherian. \square

2.15 Examples

376

(a) If R is noetherian, then each ideal contains a finite product of prime ideals.

Solution. Suppose that the family \mathcal{F} of ideals in R that do not contain any product of prime ideals is nonempty. Then by Theorem 2.3, \mathcal{F} has a maximal element, say A. Because $A \in \mathcal{F}$, A is not a prime ideal. Hence, there exist ideals B and C of R such that $BC \subset A$, but $B \not\subset A$, $C \not\subset A$. Consider

$$(B+A)(C+A) \subset BC+BA+AC+A^2 \subset A.$$

Because, $B + A \supseteq A$, and $C + A \supseteq A$, both B + A and C + A contain a