MA3150 ANALYTIC NUMBER THEORY, EXERCISES 2, 2019: THE GAMMA FUNCTION AND THE FUNCTIONAL EQUATION FOR $\zeta(s)$

(1) Show by explicit computation that $\Gamma(1 / 2)=\sqrt{\pi}$.
(2) Show that

$$
\int_{1}^{\infty}(x-[x]) x^{-2} d x=1-\gamma
$$

where γ is Euler's constant.
(3) Use the result of problem (2) to show that

$$
\lim _{s \rightarrow 1}\left(\frac{\zeta^{\prime}(s)}{\zeta(s)}+\frac{1}{s-1}\right)=\gamma
$$

Hint: Remember that $\zeta(s)$ can be expressed as

$$
\zeta(s)=\frac{s}{s-1}-s \int_{1}^{\infty}(x-[x]) x^{-s-1} d x
$$

(4) Use the infinite product representation
(1)

$$
1 / \Gamma(s)=s e^{\gamma s} \prod_{k=1}^{\infty}(1+s / k) e^{-s / k}
$$

and the result of problem (3) to show that

$$
\lim _{s \rightarrow 0}\left(\frac{\zeta^{\prime}(1-s)}{\zeta(1-s)}+\frac{\Gamma^{\prime}(s)}{\Gamma(s)}\right)=0
$$

(5) Use the functional equation $\Gamma(s+1)=s \Gamma(s)$, the reflection formula

$$
\Gamma(s) \Gamma(1-s)=\frac{\pi}{\sin \pi s}
$$

and Legendre's duplication formula

$$
\Gamma(2 s)=\frac{2^{2 s-1}}{\sqrt{\pi}} \Gamma(s) \Gamma(s+1 / 2)
$$

to establish the unsymmetric form of the functional equation:

$$
\zeta(1-s)=2^{1-s} \pi^{-s}\left(\cos \frac{1}{2} \pi s\right) \Gamma(s) \zeta(s)
$$

(6) Use the unsymmetric form of the functional equation to compute the logarithmic derivative of $\zeta(1-s)$. Use this formula and the result of problem (4) to show that $\zeta^{\prime}(0) / \zeta(0)=$ $\log (2 \pi)$.
(7) Determine the residues of $x^{s} \zeta^{\prime}(s) /(s \zeta(s))$ at all its real poles.
(8) Let C be the rectangular contour (oriented counter-clockwise) with corners at the points $c \pm i T$ and $-(2 N+1) \pm i T$, where $c>1$ and N is a positive integer. Assume that $\zeta(s)$ has no zeros on the horizontal line $t=T$. Use the solution to problem (7) to express

$$
\frac{1}{2 \pi i} \int_{C} \frac{x^{s} \zeta^{\prime}(s)}{s \zeta(s)} d s
$$

in terms of the nontrivial zeros ρ_{j} of $\zeta(s)$ with imaginary parts between $-T$ and T.
(9) Use Stirling's formula to prove that

$$
\frac{\Gamma^{\prime}(s)}{\Gamma(s)}=\log s+O(1)
$$

when s is at positive distance from the poles of $\Gamma(s)$. Can you describe a region in which we have the sharper asymptotic formula

$$
\frac{\Gamma^{\prime}(s)}{\Gamma(s)}=\log s+O\left(|s|^{-1}\right) ?
$$

(10) Use the logarithmic derivative from problem (6) and the result of problem (9) to show that

$$
\left|\zeta^{\prime}(s) / \zeta(s)\right|=O(\log (|s|+2)
$$

when s at distance say 1 from the trivial zeros of $\zeta(s)$ and $\sigma \leq-1$.
Remark. If you succeeded in solving the problems above, you did a good part of the work required to establish von Mangoldt's explicit formula for Chebyshev's function $\psi^{*}(x)$. What remains in our analysis of the above contour integral, is to deal with that part of the contour C that comes close to the nontrivial zeros of $\zeta(s)$.

