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Formulation of the theorem in the simplest case

Denote by C[0, 1] the vector space of continuous
functions f : [0, 1]→ R. With the uniform norm, C[0, 1]
is a Banach space.

Let I : C[0, 1]→ R be a positive linear functional.
There exists a unique positive, finite Borel measure µ
on [0, 1] such that

I(f ) =
∫
[0,1]

f dµ

for all f ∈ C[0, 1].



The idea of the proof

Given I : C[0, 1]→ R a positive linear functional, want a
measure µ so that for all f ∈ C[0, 1]

I(f ) =
∫
[0,1]

f dµ.

So in some sense, it is like we had the integral and
wanted to find the measure.

Then for Borel sets E, we would like to define µ(E) as

µ(E) =

∫
[0,1]

1E dµ := I(1E).

The problem is that 1E is not continuous in general, so
I(1E) is not defined.
The idea is then to extend I to a larger space of
functions, that contains at least all indicator functions
1U , where U is open.



The extension of I to a larger space

We denote by BLSC+[0, 1] the family of all bounded,
lower semi continuous functions f : [0, 1]→ R with
f > 0.

It is easy to see that for every open set U ⊂ [0, 1], the
function 1U ∈ BLSC+[0, 1].

Functions in BLSC+[0, 1] are well approximated from
below by continuous functions. Then it makes sense
to define, for every f ∈ BLSC+[0, 1],

Ĩ(f ) := sup { I(g) : g ∈ C[0, 1] and 0 6 g 6 f }.



The properties of the extension

For every f ∈ BLSC+[0, 1],

Ĩ(f ) := sup { I(g) : g ∈ C[0, 1] and 0 6 g 6 f }.

(i) If f ∈ C[0, 1] then Ĩ(f ) = I(f ) (̃I indeed extends I ).
(ii) For all f ∈ BLSC+[0, 1], Ĩ(f ) > 0 (positivity).
(iii) If f1 6 f2 then Ĩ(f1) 6 Ĩ(f2) (monotonicity).
(iv) For all f ∈ BLSC+[0, 1], Ĩ(f ) <∞ (finiteness).
(v) For all c > 0, Ĩ(c f ) = c Ĩ(f ) (homogeneity).
(vi) For all f1, f2 ∈ BLSC+[0, 1], Ĩ(f1 + f2) > Ĩ(f1) + Ĩ(f2)

(super-additivity).
(vii) If f and f1, f2, . . . ∈ BLSC+[0, 1] are such that

f 6
∞∑

n=1

fn then Ĩ(f ) 6
∞∑

n=1

Ĩ(fn)

(countable sub-additivity).



Towards defining the measure

For every open set U ⊂ [0, 1], 1U ∈ BLSC+[0, 1], so we
may define

µ0(U ) := Ĩ(1U ).

Note: In fact we can show (homework) that

µ0(U ) = sup { I(g) : g ∈ C[0, 1], 0 6 g 6 1 and supp (g) ⊂ U },

where supp (g) is the topological support of g.

It is easy to verify that µ0 satisfies the following:
µ0(∅) = 0 and 0 6 µ0(U ) <∞ for every open set U .

If U1 ⊂ U2 then µ0(U1) 6 µ0(U2).

If U =
⋃∞

n=1 Un then µ0(U ) 6
∑∞

n=1 µ0(Un).

The last property follows from the countable
sub-additivity of the extension Ĩ.



Defining the outer measure

For every open set U ⊂ [0, 1] we have defined

µ0(U ) := Ĩ(1U ).

Now for every set E ⊂ [0, 1] define

µ?(E) := inf {µ0(U ) : U open, U ⊃ E }.

Note that if U is an open set, then µ?(U ) = µ0(U ).

It is not difficult to show that µ? is an outer-measure,
meaning that it satisfies the following properties:

(1) µ? > 0 and µ?(∅) = 0.

(2) If E1 ⊂ E2 then µ?(E1) 6 µ?(E2).

(3) If E =
⋃∞

n=1 En then µ?(E) 6
∑∞

n=1 µ
?(En).



At last, the promised measure

By Carathéodory’s extension theorem, given the outer
measure µ?, the family of sets A ⊂ [0, 1] with the
property

µ?(E) = µ?(E ∩ A) + µ?(E \ A) for all E ⊂ [0, 1]

forms a σ-algebra.
Moreover, restricted to this σ-algebra, the outer
measure µ? is a measure, which we shall denote by µ.

It turns out that all open sets verify the above
property. Then µ is a Borel measure, and it is finite.

Finally, we have to check that this measure does the
job, that is, for all f ∈ C[0, 1] we have I(f ) =

∫
[0,1] f dµ.

This follows from the fact that continuous functions
can be approximated by simple functions of the form∑k

i=1 ci 1Ei with E1, . . . , Ek open or closed sets.


