The Riesz-Markov-Kakutani theorem

MA3105 Advanced Real Analysis Norwegian University of Science and Technology (NTNU)

Formulation of the theorem in the simplest case

Denote by C[0, 1] the vector space of continuous functions $f: [0, 1] \rightarrow \mathbb{R}$. With the uniform norm, C[0, 1] is a Banach space.

Let $I: C[0, 1] \to \mathbb{R}$ be a positive linear functional. There exists a unique positive, finite Borel measure μ on [0, 1] such that

$$I(f) = \int_{[0,1]} f \, d\mu$$

for all $f \in C[0, 1]$.

The idea of the proof

Given $I: C[0, 1] \to \mathbb{R}$ a positive linear functional, want a measure μ so that for all $f \in C[0, 1]$

$$I(f) = \int_{[0,1]} f \, d\mu.$$

So in some sense, it is like we had the integral and wanted to find the measure.

Then for Borel sets *E*, we would like to define $\mu(E)$ as

$$\mu(E) = \int_{[0,1]} \mathbb{1}_E d\mu := I(\mathbb{1}_E).$$

The problem is that $\mathbb{1}_E$ is not continuous in general, so $I(\mathbb{1}_E)$ is not defined.

The idea is then to **extend** *I* to a larger space of functions, that contains at least all indicator functions $\mathbb{1}_U$, where *U* is open.

The extension of I to a larger space

We denote by $BLSC_+[0, 1]$ the family of all bounded, lower semi continuous functions $f: [0, 1] \to \mathbb{R}$ with $f \ge 0$.

It is easy to see that for every open set $U \subset [0, 1]$, the function $\mathbb{1}_U \in \text{BLSC}_+[0, 1]$.

Functions in $BLSC_+[0, 1]$ are well approximated from below by continuous functions. Then it makes sense to define, for every $f \in BLSC_+[0, 1]$,

 $\widetilde{I}(f) := \sup\{I(g) \colon g \in C[0, 1] \text{ and } 0 \leq g \leq f\}.$

The properties of the extension

For every $f \in \text{BLSC}_+[0, 1]$,

 $\widetilde{I}(f) := \sup\{I(g) \colon g \in C[0,1] \text{ and } 0 \leqslant g \leqslant f\}.$

- (i) If $f \in C[0, 1]$ then $\widetilde{I}(f) = I(f)$ (\widetilde{I} indeed extends I).
- (ii) For all $f \in \text{BLSC}_+[0, 1]$, $\widetilde{I}(f) \ge 0$ (positivity).
- (iii) If $f_1 \leq f_2$ then $I(f_1) \leq I(f_2)$ (monotonicity).
- (iv) For all $f \in \text{BLSC}_+[0, 1]$, $\widetilde{I}(f) < \infty$ (finiteness).
- (v) For all $c \ge 0$, $\widetilde{I}(cf) = c\widetilde{I}(f)$ (homogeneity).
- (vi) For all $f_1, f_2 \in \text{BLSC}_+[0, 1]$, $\tilde{I}(f_1 + f_2) \ge \tilde{I}(f_1) + \tilde{I}(f_2)$ (super-additivity).
- (vii) If f and $f_1, f_2, \ldots \in \text{BLSC}_+[0, 1]$ are such that $f \leq \sum_{n=1}^{\infty} f_n$ then $\widetilde{I}(f) \leq \sum_{n=1}^{\infty} \widetilde{I}(f_n)$ (countable sub-additivity).

Towards defining the measure

For every open set $U \subset [0, 1]$, $\mathbb{1}_U \in \text{BLSC}_+[0, 1]$, so we may define

$$\mu_0(U):=\widetilde{I}(\mathbb{1}_U).$$

Note: In fact we can show (homework) that

 $\mu_0(U) = \sup\{I(g) : g \in C[0, 1], 0 \leq g \leq 1 \text{ and } \sup (g) \subset U\},$ where $\sup (g)$ is the topological support of g.

It is easy to verify that μ_0 satisfies the following:

- $\mu_0(\emptyset) = 0$ and $0 \leq \mu_0(U) < \infty$ for every open set U.
- If $U_1 \subset U_2$ then $\mu_0(U_1) \leqslant \mu_0(U_2)$.
- If $U = \bigcup_{n=1}^{\infty} U_n$ then $\mu_0(U) \leq \sum_{n=1}^{\infty} \mu_0(U_n)$.

The last property follows from the countable sub-additivity of the extension \tilde{I} .

Defining the outer measure

For every open set $U \subset [0,1]$ we have defined $\mu_0(U) := \widetilde{I}(\mathbbm{1}_U).$

Now for every set $E \subset [0, 1]$ define

 $\mu^{\star}(E) := \inf\{ \mu_0(U) \colon U \text{ open, } U \supset E \}.$

Note that if *U* is an open set, then $\mu^{\star}(U) = \mu_0(U)$.

It is not difficult to show that μ^* is an outer-measure, meaning that it satisfies the following properties:

(1)
$$\mu^* \ge 0$$
 and $\mu^*(\emptyset) = 0$.

- (2) If $E_1 \subset E_2$ then $\mu^*(E_1) \leq \mu^*(E_2)$.
- (3) If $E = \bigcup_{n=1}^{\infty} E_n$ then $\mu^*(E) \leq \sum_{n=1}^{\infty} \mu^*(E_n)$.

At last, the promised measure

By Carathéodory's extension theorem, given the outer measure μ^* , the family of sets $A \subset [0, 1]$ with the property

 $\mu^{\star}(E) = \mu^{\star}(E \cap A) + \mu^{\star}(E \setminus A)$ for all $E \subset [0, 1]$

forms a σ -algebra. Moreover, restricted to this σ -algebra, the outer measure μ^* is a measure, which we shall denote by μ .

It turns out that all open sets verify the above property. Then μ is a Borel measure, and it is finite.

Finally, we have to check that this measure does the job, that is, for all $f \in C[0, 1]$ we have $I(f) = \int_{[0,1]} f d\mu$. This follows from the fact that continuous functions can be approximated by simple functions of the form $\sum_{i=1}^{k} c_i \mathbb{1}_{E_i}$ with E_1, \ldots, E_k open or closed sets.