The Riesz-Markov-Kakutani theorem

MA3105 Advanced Real Analysis
Norwegian University of Science and Technology (NTNU)

Formulation of the theorem in the simplest case

Denote by $C[0,1]$ the vector space of continuous functions $f:[0,1] \rightarrow \mathbb{R}$. With the uniform norm, $C[0,1]$ is a Banach space.

Let $I: C[0,1] \rightarrow \mathbb{R}$ be a positive linear functional. There exists a unique positive, finite Borel measure μ on $[0,1]$ such that

$$
I(f)=\int_{[0,1]} f d \mu
$$

for all $f \in C[0,1]$.

The idea of the proof

Given $I: C[0,1] \rightarrow \mathbb{R}$ a positive linear functional, want a measure μ so that for all $f \in C[0,1]$

$$
I(f)=\int_{[0,1]} f d \mu
$$

So in some sense, it is like we had the integral and wanted to find the measure.

Then for Borel sets E, we would like to define $\mu(E)$ as

$$
\mu(E)=\int_{[0,1]} \mathbb{1}_{E} d \mu:=I\left(\mathbb{1}_{E}\right)
$$

The problem is that $\mathbb{1}_{E}$ is not continuous in general, so $I\left(\mathbb{1}_{E}\right)$ is not defined.
The idea is then to extend I to a larger space of functions, that contains at least all indicator functions $\mathbb{1}_{U}$, where U is open.

The extension of I to a larger space

We denote by $\mathrm{BLSC}_{+}[0,1]$ the family of all bounded, lower semi continuous functions $f:[0,1] \rightarrow \mathbb{R}$ with $f \geqslant 0$.

It is easy to see that for every open set $U \subset[0,1]$, the function $\mathbb{1}_{U} \in \mathrm{BLSC}_{+}[0,1]$.

Functions in $\mathrm{BLSC}_{+}[0,1]$ are well approximated from below by continuous functions. Then it makes sense to define, for every $f \in \mathrm{BLSC}_{+}[0,1]$,

$$
\widetilde{I}(f):=\sup \{I(g): g \in C[0,1] \text { and } 0 \leqslant g \leqslant f\}
$$

The properties of the extension

For every $f \in \operatorname{BLSC}_{+}[0,1]$,

$$
\widetilde{I}(f):=\sup \{I(g): g \in C[0,1] \text { and } 0 \leqslant g \leqslant f\} .
$$

The properties of the extension

For every $f \in \operatorname{BLSC}_{+}[0,1]$,

$$
\widetilde{I}(f):=\sup \{I(g): g \in C[0,1] \text { and } 0 \leqslant g \leqslant f\} .
$$

(i) If $f \in C[0,1]$ then $\widetilde{I}(f)=I(f)(\widetilde{I}$ indeed extends $I)$.

The properties of the extension

For every $f \in \operatorname{BLSC}_{+}[0,1]$,

$$
\widetilde{I}(f):=\sup \{I(g): g \in C[0,1] \text { and } 0 \leqslant g \leqslant f\} .
$$

(i) If $f \in C[0,1]$ then $\widetilde{I}(f)=I(f)(\widetilde{I}$ indeed extends $I)$. (ii) For all $f \in \mathrm{BLSC}_{+}[0,1], \widetilde{I}(f) \geqslant 0$ (positivity).

The properties of the extension

For every $f \in \mathrm{BLSC}_{+}[0,1]$,

$$
\widetilde{I}(f):=\sup \{I(g): g \in C[0,1] \text { and } 0 \leqslant g \leqslant f\} .
$$

(i) If $f \in C[0,1]$ then $\widetilde{I}(f)=I(f)(\widetilde{I}$ indeed extends $I)$.
(ii) For all $f \in \mathrm{BLSC}_{+}[0,1], \widetilde{I}(f) \geqslant 0$ (positivity).
(iii) If $f_{1} \leqslant f_{2}$ then $\widetilde{I}\left(f_{1}\right) \leqslant \widetilde{I}\left(f_{2}\right)$ (monotonicity).

The properties of the extension

For every $f \in \mathrm{BLSC}_{+}[0,1]$,

$$
\widetilde{I}(f):=\sup \{I(g): g \in C[0,1] \text { and } 0 \leqslant g \leqslant f\} .
$$

(i) If $f \in C[0,1]$ then $\widetilde{I}(f)=I(f)(\widetilde{I}$ indeed extends $I)$. (ii) For all $f \in \mathrm{BLSC}_{+}[0,1], \widetilde{I}(f) \geqslant 0$ (positivity). (iii) If $f_{1} \leqslant f_{2}$ then $\widetilde{I}\left(f_{1}\right) \leqslant \widetilde{I}\left(f_{2}\right)$ (monotonicity). (iv) For all $f \in \mathrm{BLSC}_{+}[0,1], \widetilde{I}(f)<\infty$ (finiteness).

The properties of the extension

For every $f \in \operatorname{BLSC}_{+}[0,1]$,

$$
\widetilde{I}(f):=\sup \{I(g): g \in C[0,1] \text { and } 0 \leqslant g \leqslant f\} .
$$

(i) If $f \in C[0,1]$ then $\widetilde{I}(f)=I(f)(\widetilde{I}$ indeed extends $I)$.
(ii) For all $f \in \mathrm{BLSC}_{+}[0,1], \widetilde{I}(f) \geqslant 0$ (positivity).
(iii) If $f_{1} \leqslant f_{2}$ then $\widetilde{I}\left(f_{1}\right) \leqslant \widetilde{I}\left(f_{2}\right)$ (monotonicity).
(iv) For all $f \in \mathrm{BLSC}_{+}[0,1], \widetilde{I}(f)<\infty$ (finiteness).
(v) For all $c \geqslant 0, \widetilde{I}(c f)=c \widetilde{I}(f)$ (homogeneity).

The properties of the extension

For every $f \in \operatorname{BLSC}_{+}[0,1]$,

$$
\widetilde{I}(f):=\sup \{I(g): g \in C[0,1] \text { and } 0 \leqslant g \leqslant f\} .
$$

(i) If $f \in C[0,1]$ then $\widetilde{I}(f)=I(f)$ (\widetilde{I} indeed extends $I)$.
(ii) For all $f \in \mathrm{BLSC}_{+}[0,1], \widetilde{I}(f) \geqslant 0$ (positivity).
(iii) If $f_{1} \leqslant f_{2}$ then $\widetilde{I}\left(f_{1}\right) \leqslant \widetilde{I}\left(f_{2}\right)$ (monotonicity).
(iv) For all $f \in \mathrm{BLSC}_{+}[0,1], \widetilde{I}(f)<\infty$ (finiteness).
(v) For all $c \geqslant 0, \widetilde{I}(c f)=c \widetilde{I}(f)$ (homogeneity).
(vi) For all $f_{1}, f_{2} \in \operatorname{BLSC}_{+}[0,1], \widetilde{I}\left(f_{1}+f_{2}\right) \geqslant \widetilde{I}\left(f_{1}\right)+\widetilde{I}\left(f_{2}\right)$ (super-additivity).

The properties of the extension

For every $f \in \operatorname{BLSC}_{+}[0,1]$,

$$
\widetilde{I}(f):=\sup \{I(g): g \in C[0,1] \text { and } 0 \leqslant g \leqslant f\}
$$

(i) If $f \in C[0,1]$ then $\widetilde{I}(f)=I(f)(\widetilde{I}$ indeed extends $I)$.
(ii) For all $f \in \mathrm{BLSC}_{+}[0,1], \widetilde{I}(f) \geqslant 0$ (positivity).
(iii) If $f_{1} \leqslant f_{2}$ then $\widetilde{I}\left(f_{1}\right) \leqslant \widetilde{I}\left(f_{2}\right)$ (monotonicity).
(iv) For all $f \in \mathrm{BLSC}_{+}[0,1], \widetilde{I}(f)<\infty$ (finiteness).
(v) For all $c \geqslant 0, \widetilde{I}(c f)=c \widetilde{I}(f)$ (homogeneity).
(vi) For all $f_{1}, f_{2} \in \mathrm{BLSC}_{+}[0,1], \widetilde{I}\left(f_{1}+f_{2}\right) \geqslant \widetilde{I}\left(f_{1}\right)+\widetilde{I}\left(f_{2}\right)$ (super-additivity).
(vii) If f and $f_{1}, f_{2}, \ldots \in \mathrm{BLSC}_{+}[0,1]$ are such that
$f \leqslant \sum_{n=1}^{\infty} f_{n}$ then $\widetilde{I}(f) \leqslant \sum_{n=1}^{\infty} \widetilde{I}\left(f_{n}\right)$
(countable sub-additivity).

Towards defining the measure

For every open set $U \subset[0,1], \mathbb{1}_{U} \in \mathrm{BLSC}_{+}[0,1]$, so we may define

$$
\mu_{0}(U):=\widetilde{I}\left(\mathbb{1}_{U}\right)
$$

Towards defining the measure

For every open set $U \subset[0,1], \mathbb{1}_{U} \in \mathrm{BLSC}_{+}[0,1]$, so we may define

$$
\mu_{0}(U):=\widetilde{I}\left(\mathbb{1}_{U}\right)
$$

Note: In fact we can show (homework) that $\mu_{0}(U)=\sup \{I(g): g \in C[0,1], 0 \leqslant g \leqslant 1$ and $\operatorname{supp}(g) \subset U\}$, where $\operatorname{supp}(g)$ is the topological support of g.

Towards defining the measure

For every open set $U \subset[0,1], \mathbb{1}_{U} \in \mathrm{BLSC}_{+}[0,1]$, so we may define

$$
\mu_{0}(U):=\widetilde{I}\left(\mathbb{1}_{U}\right)
$$

Note: In fact we can show (homework) that $\mu_{0}(U)=\sup \{I(g): g \in C[0,1], 0 \leqslant g \leqslant 1$ and $\operatorname{supp}(g) \subset U\}$, where $\operatorname{supp}(g)$ is the topological support of g.

It is easy to verify that μ_{0} satisfies the following:

- $\mu_{0}(\varnothing)=0$ and $0 \leqslant \mu_{0}(U)<\infty$ for every open set U.

Towards defining the measure

For every open set $U \subset[0,1], \mathbb{1}_{U} \in \mathrm{BLSC}_{+}[0,1]$, so we may define

$$
\mu_{0}(U):=\widetilde{I}\left(\mathbb{1}_{U}\right)
$$

Note: In fact we can show (homework) that $\mu_{0}(U)=\sup \{I(g): g \in C[0,1], 0 \leqslant g \leqslant 1$ and $\operatorname{supp}(g) \subset U\}$, where $\operatorname{supp}(g)$ is the topological support of g.

It is easy to verify that μ_{0} satisfies the following:

- $\mu_{0}(\varnothing)=0$ and $0 \leqslant \mu_{0}(U)<\infty$ for every open set U.
- If $U_{1} \subset U_{2}$ then $\mu_{0}\left(U_{1}\right) \leqslant \mu_{0}\left(U_{2}\right)$.

Towards defining the measure

For every open set $U \subset[0,1], \mathbb{1}_{U} \in \mathrm{BLSC}_{+}[0,1]$, so we may define

$$
\mu_{0}(U):=\widetilde{I}\left(\mathbb{1}_{U}\right)
$$

Note: In fact we can show (homework) that $\mu_{0}(U)=\sup \{I(g): g \in C[0,1], 0 \leqslant g \leqslant 1$ and $\operatorname{supp}(g) \subset U\}$, where $\operatorname{supp}(g)$ is the topological support of g.

It is easy to verify that μ_{0} satisfies the following:

- $\mu_{0}(\varnothing)=0$ and $0 \leqslant \mu_{0}(U)<\infty$ for every open set U.
- If $U_{1} \subset U_{2}$ then $\mu_{0}\left(U_{1}\right) \leqslant \mu_{0}\left(U_{2}\right)$.
- If $U=\bigcup_{n=1}^{\infty} U_{n}$ then $\mu_{0}(U) \leqslant \sum_{n=1}^{\infty} \mu_{0}\left(U_{n}\right)$.

The last property follows from the countable sub-additivity of the extension \widetilde{I}.

Defining the outer measure

For every open set $U \subset[0,1]$ we have defined

$$
\mu_{0}(U):=\widetilde{I}\left(\mathbb{1}_{U}\right)
$$

Now for every set $E \subset[0,1]$ define

$$
\mu^{\star}(E):=\inf \left\{\mu_{0}(U): U \text { open, } U \supset E\right\} .
$$

Defining the outer measure

For every open set $U \subset[0,1]$ we have defined

$$
\mu_{0}(U):=\widetilde{I}\left(\mathbb{1}_{U}\right)
$$

Now for every set $E \subset[0,1]$ define

$$
\mu^{\star}(E):=\inf \left\{\mu_{0}(U): U \text { open, } U \supset E\right\} .
$$

Note that if U is an open set, then $\mu^{\star}(U)=\mu_{0}(U)$.

Defining the outer measure

For every open set $U \subset[0,1]$ we have defined

$$
\mu_{0}(U):=\widetilde{I}\left(\mathbb{1}_{U}\right)
$$

Now for every set $E \subset[0,1]$ define

$$
\mu^{\star}(E):=\inf \left\{\mu_{0}(U): U \text { open, } U \supset E\right\} .
$$

Note that if U is an open set, then $\mu^{\star}(U)=\mu_{0}(U)$.
It is not difficult to show that μ^{\star} is an outer-measure, meaning that it satisfies the following properties:

Defining the outer measure

For every open set $U \subset[0,1]$ we have defined

$$
\mu_{0}(U):=\widetilde{I}\left(\mathbb{1}_{U}\right)
$$

Now for every set $E \subset[0,1]$ define

$$
\mu^{\star}(E):=\inf \left\{\mu_{0}(U): U \text { open, } U \supset E\right\} .
$$

Note that if U is an open set, then $\mu^{\star}(U)=\mu_{0}(U)$.
It is not difficult to show that μ^{\star} is an outer-measure, meaning that it satisfies the following properties:
(1) $\mu^{\star} \geqslant 0$ and $\mu^{\star}(\varnothing)=0$.

Defining the outer measure

For every open set $U \subset[0,1]$ we have defined

$$
\mu_{0}(U):=\widetilde{I}\left(\mathbb{1}_{U}\right)
$$

Now for every set $E \subset[0,1]$ define

$$
\mu^{\star}(E):=\inf \left\{\mu_{0}(U): U \text { open, } U \supset E\right\} .
$$

Note that if U is an open set, then $\mu^{\star}(U)=\mu_{0}(U)$.
It is not difficult to show that μ^{\star} is an outer-measure, meaning that it satisfies the following properties:
(1) $\mu^{\star} \geqslant 0$ and $\mu^{\star}(\varnothing)=0$.
(2) If $E_{1} \subset E_{2}$ then $\mu^{\star}\left(E_{1}\right) \leqslant \mu^{\star}\left(E_{2}\right)$.

Defining the outer measure

For every open set $U \subset[0,1]$ we have defined

$$
\mu_{0}(U):=\widetilde{I}\left(\mathbb{1}_{U}\right)
$$

Now for every set $E \subset[0,1]$ define

$$
\mu^{\star}(E):=\inf \left\{\mu_{0}(U): U \text { open, } U \supset E\right\} .
$$

Note that if U is an open set, then $\mu^{\star}(U)=\mu_{0}(U)$.
It is not difficult to show that μ^{\star} is an outer-measure, meaning that it satisfies the following properties:
(1) $\mu^{\star} \geqslant 0$ and $\mu^{\star}(\varnothing)=0$.
(2) If $E_{1} \subset E_{2}$ then $\mu^{\star}\left(E_{1}\right) \leqslant \mu^{\star}\left(E_{2}\right)$.
(3) If $E=\bigcup_{n=1}^{\infty} E_{n}$ then $\mu^{\star}(E) \leqslant \sum_{n=1}^{\infty} \mu^{\star}\left(E_{n}\right)$.

At last, the promised measure

By Carathéodory's extension theorem, given the outer measure μ^{\star}, the family of sets $A \subset[0,1]$ with the property

$$
\mu^{\star}(E)=\mu^{\star}(E \cap A)+\mu^{\star}(E \backslash A) \text { for all } E \subset[0,1]
$$

forms a σ-algebra.
Moreover, restricted to this σ-algebra, the outer measure μ^{\star} is a measure, which we shall denote by μ.

At last, the promised measure

By Carathéodory's extension theorem, given the outer measure μ^{\star}, the family of sets $A \subset[0,1]$ with the property

$$
\mu^{\star}(E)=\mu^{\star}(E \cap A)+\mu^{\star}(E \backslash A) \text { for all } E \subset[0,1]
$$

forms a σ-algebra.
Moreover, restricted to this σ-algebra, the outer measure μ^{\star} is a measure, which we shall denote by μ.

It turns out that all open sets verify the above property. Then μ is a Borel measure, and it is finite.

At last, the promised measure

By Carathéodory's extension theorem, given the outer measure μ^{\star}, the family of sets $A \subset[0,1]$ with the property

$$
\mu^{\star}(E)=\mu^{\star}(E \cap A)+\mu^{\star}(E \backslash A) \text { for all } E \subset[0,1]
$$

forms a σ-algebra.
Moreover, restricted to this σ-algebra, the outer measure μ^{\star} is a measure, which we shall denote by μ.

It turns out that all open sets verify the above property. Then μ is a Borel measure, and it is finite.

Finally, we have to check that this measure does the job, that is, for all $f \in C[0,1]$ we have $I(f)=\int_{[0,1]} f d \mu$. This follows from the fact that continuous functions can be approximated by simple functions of the form $\sum_{i=1}^{k} c_{i} \mathbb{1}_{E_{i}}$ with E_{1}, \ldots, E_{k} open or closed sets.

