The Lebesgue-Radon-Nikodym theorem

MA3105 Advanced Real Analysis Norwegian University of Science and Technology (NTNU)

Mutually singular measures

Let (Ω, \mathfrak{F}) be a measurable space.

Two signed measures μ_1 and μ_2 are called mutually singular, which we denote by

 $\mu_1 \perp \mu_2$,

if there is an \mathcal{F} -measurable set E such that μ_1 is supported in E, while μ_2 is supported in E^{\complement} .

More precisely, for any \mathcal{F} -measurable set $F_1 \subset E^{\complement}$ we have $\mu_1(F_1) = 0$, while for any \mathcal{F} -measurable set $F_2 \subset E$ we have $\mu_2(F_2) = 0$.

Absolutely continuous measure, Radon-Nikodym derivative

Let (Ω, \mathfrak{F}) be a measurable space, and let m be a σ -finite, positive (reference) measure on it.

Given any measurable function $f: \Omega \to [0, \infty]$, the map $m_f: \mathcal{F} \to [0, \infty]$,

$$\mathbf{m}_{f}(E) := \int_{E} f \, d\mathbf{m} = \int_{\Omega} \mathbb{1}_{E} f \, d\mathbf{m}$$

defines a positive measure on (Ω, \mathcal{F}) . Moreover, for any measurable, non-negative function *g* we have

$$\int_{\Omega} g \, d\mathbf{m}_f = \int_{\Omega} g f \, d\mathbf{m}_f$$

which may be expressed symbolically

$$dm_f = f dm$$

Similarly, if $f: \Omega \to \mathbb{R}$ is absolutely integrable, the corresponding map m_f is a signed, finite measure.

Absolutely continuous measure, Radon-Nikodym derivative

Let (Ω, \mathfrak{F}) be a measurable space, and let m be a σ -finite, positive (reference) measure on it.

Given another measure μ (signed or unsigned) on (Ω, \mathcal{F}) , we say that μ is absolutely continuous (or differentiable) w.r.t. m if there is a measurable function f on Ω such that

 $\mu = m_f$ or symbolically, $d\mu = f dm$.

The function *f* above is called the Radon-Nikodym derivative of μ w.r.t. m and we write symbolically

$$f = \frac{d\mu}{dm}.$$

We know that such a function if it exists, it is unique, in the sense that if $m_{f_1} = m_{f_2}$, then $f_1(x) = f_2(x)$ for *m*-a.e. $x \in \Omega$. Hence the Radon-Nikodym derivative is well defined.

Theorem (Lebesgue-Radon-Nikodym)

Let $(\Omega, \mathfrak{F}, m)$ be a $\sigma\text{-finite}$ measure space and let μ be a $\sigma\text{-finite}$ signed measure.

There exists a unique decomposition

 $\mu = m_f + \mu_s$

where $f: \Omega \to \mathbb{R}$ is measurable and $\mu_s \perp m$.

Moreover,

if μ is positive, then $f \ge 0$ m-a.e. and μ_s is positive; if μ is finite, the $f \in L^1(m)$ and μ_s is finite.

Theorem (Lebesgue-Radon-Nikodym)

Let $(\Omega, \mathfrak{F}, m)$ be a $\sigma\text{-finite}$ measure space and let μ be a $\sigma\text{-finite}$ signed measure.

The following statements are equivalent:

- (1) $\mu = m_f$ for some *f* measurable (meaning μ is absolutely continuous w.r.t. m);
- (2) For any \mathcal{F} -measurable set E, if m(E) = 0 then $\mu(E) = 0$.
- (3) For any $\epsilon > 0$ there is $\delta > 0$ such that if *E* is an \mathfrak{F} -measurable set with $m(E) \leq \delta$ then $|\mu|(E) < \epsilon$.

This theorem, namely item (3), justifies the use of the terminology μ is absolutely continuous w.r.t. m. We represent this symbolically by

 $\mu \ll m.$

Theorem (Lebesgue decomposition)

Let $(\Omega, \mathfrak{F}, m)$ be a $\sigma\text{-finite}$ measure space and let μ be a $\sigma\text{-finite}$ signed measure.

There exists a unique decomposition

 $\mu = \mu_{ac} + \mu_s$

where $\mu_{ac} \ll m$ and $\mu_s \perp m$. Moreover, if $\mu \ge 0$ then $\mu_{ac}, \mu_s \ge 0$.

If every singleton {*x*}, $x \in \Omega$ is a measurable set, then the singular part can be further decomposed. Assume that m is **continuous**, meaning that $m({x}) = 0$ for every $x \in \Omega$. Then there is a unique decomposition

 $\mu = \mu_{ac} + \mu_{sc} + \mu_{pp},$

where μ_{ac} is absolutely continuous w.r.t. m, μ_{sc} is singular w.r.t. m and continuous, while μ_{pp} is a pure point measure (meaning a sum of Dirac measures).