HOMEWORK 6 EXPECTATION AND DISTRIBUTIONS

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.
Problem 1. Prove the Cauchy-Schwarz inequality: if X, Y are non-negative random variables, then

$$
\mathbb{E} X Y \leq\left(\mathbb{E} X^{2}\right)^{1 / 2}\left(\mathbb{E} Y^{2}\right)^{1 / 2}
$$

Moreover, if X, Y are absolutely integrable random variables, then

$$
|\mathbb{E} X Y| \leq\left(\mathbb{E} X^{2}\right)^{1 / 2}\left(\mathbb{E} Y^{2}\right)^{1 / 2}
$$

Deduce that for any random variable X we have

$$
\mathbb{E}|X| \leq\left(\mathbb{E}|X|^{2}\right)^{1 / 2}
$$

Hint: Begin with the case when both X and Y are simple functions. It is convenient to represent them as

$$
X=\sum_{i=1}^{k} a_{i} \mathbf{1}_{E_{i}} \quad \text { and } \quad Y=\sum_{i=1}^{k} b_{i} \mathbf{1}_{E_{i}}
$$

that is, using the same sets E_{1}, \ldots, E_{k}. Why is this possible?
Problem 2. Prove that if X is a random variable such that $0<\mathbb{E}|X|^{2}<\infty$ then

$$
\mathbb{P}(X \neq 0) \geq \frac{(\mathbb{E}|X|)^{2}}{\mathbb{E}|X|^{2}}
$$

Problem 3. Define the L^{∞} norm of a random variable X as

$$
\|X\|_{\infty}:=\inf \{M:|X| \leq M \text { a.s. }\} .
$$

Show that if X, Y are non-negative random variables, then

$$
\mathbb{E} X Y \leq \mathbb{E}|X|\|Y\|_{\infty}
$$

Problem 4. Let X be a random variable and let $F_{X}(x)=\mathbb{P}(X \leq x)$ be its CDF.
Show that if F_{X} is continuous then the random variable $Y:=F_{X}(X)$ has a uniform distribution on $(0,1)$. In other words, if $y \in[0,1]$, then $\mathbb{P}(Y \leq y)=y$.

Problem 5. Suppose the random variable X has probability density function f. Compute the distribution function of X^{2} and then differentiate to find its density function.

