HOMEWORK 6 EXPECTATION AND DISTRIBUTIONS

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

Problem 1. Prove the Cauchy-Schwarz inequality: if X, Y are non-negative random variables, then

$$\mathbb{E}XY \le (\mathbb{E}X^2)^{1/2} (\mathbb{E}Y^2)^{1/2}$$

Moreover, if X, Y are absolutely integrable random variables, then

$$|\mathbb{E} XY| \le (\mathbb{E} X^2)^{1/2} \, (\mathbb{E} Y^2)^{1/2}.$$

Deduce that for any random variable X we have

$$\mathbb{E}|X| \le (\mathbb{E}|X|^2)^{1/2}.$$

Hint: Begin with the case when both X and Y are simple functions. It is convenient to represent them as

$$X = \sum_{i=1}^{k} a_i \mathbf{1}_{E_i}$$
 and $Y = \sum_{i=1}^{k} b_i \mathbf{1}_{E_i}$,

that is, using the same sets E_1, \ldots, E_k . Why is this possible?

Problem 2. Prove that if X is a random variable such that $0 < \mathbb{E}|X|^2 < \infty$ then

$$\mathbb{P}(X \neq 0) \ge \frac{(\mathbb{E}|X|)^2}{\mathbb{E}|X|^2}$$

Problem 3. Define the L^{∞} norm of a random variable X as

 $||X||_{\infty} := \inf \{ M \colon |X| \le M \text{ a.s.} \}.$

Show that if X, Y are non-negative random variables, then

 $\mathbb{E} XY \le \mathbb{E} |X| \, \|Y\|_{\infty}.$

Problem 4. Let X be a random variable and let $F_X(x) = \mathbb{P}(X \le x)$ be its CDF.

Show that if F_X is continuous then the random variable $Y := F_X(X)$ has a uniform distribution on (0, 1). In other words, if $y \in [0, 1]$, then $\mathbb{P}(Y \leq y) = y$.

Problem 5. Suppose the random variable X has probability density function f. Compute the distribution function of X^2 and then differentiate to find its density function.