HOMEWORK 4 THE RIESZ-MARKOV-KAKUTANI REPRESENTATION THEOREM

Problem 1. Let (X, d) be a metric space, let $A \subset X$ and define the function $d_A \colon X \to \mathbb{R}$,

$$d_A(x) := \operatorname{dist}(x, A) = \inf \left\{ d(x, a) \colon a \in A \right\}.$$

(a) Let $L \subset X$ be a closed set. Show that

$$d_L(x) = 0 \iff x \in L.$$

(b) For any $A \subset X$, prove that the function d_A is continuous.

Problem 2. Let K be a compact subset of \mathbb{R} and let U be an open subset of \mathbb{R} such that $K \subset U$. Prove the following refinement of Urysohn's lemma: there is *continuous* function $f \colon \mathbb{R} \to \mathbb{R}$, with compact support, such that

$$f(x) = 0$$
 if $x \in K$ and supp $(f) \subset U$,

where $\operatorname{supp}(f)$ is the topological support of f.

Hint: It would *not* be quite enough to apply Urysohn's lemma to K and $L := U^{\complement}$. You should instead apply it to K and to a slightly increased version of L.

Problem 3. Prove that if $f: K \to \mathbb{R}$ is a lower semi-continuous function, where K is a compact set, then there is $m \in \mathbb{R}$ such that

$$f(x) \ge m$$
 for all $x \in [0, 1]$.

We denote by $BLSC_+[0,1]$ the family of all bounded, *lower semi continuous* functions $f: [0,1] \to \mathbb{R}$ with $f \ge 0$.

Let $I: C[0,1] \to \mathbb{R}$ be a positive linear functional. For every $f \in BLSC_+[0,1]$ we define the extension

$$I(f) := \sup \{ I(g) : g \in C[0,1] \text{ and } 0 \le g \le f \}.$$

Since for every open set $U \subset [0, 1]$, the function $\mathbf{1}_U \in \text{BLSC}_+[0, 1]$, we may then define

$$\mu_0(U) := I(\mathbf{1}_U)$$

Problem 4. Use Problem 2 to show that

$$\mu_0(U) = \sup \{ I(g) \colon g \in C[0,1], 0 \le g \le 1 \text{ and } \sup (g) \subset U \}$$

HOMEWORK 4

We would like to define $\mu_0(F)$ also for a closed set F. To do that, we create an even larger space and further extend \tilde{I} to that space.

Let $\mathcal{L}[0,1]$ be the family of all functions $f: [0,1] \to \mathbb{R}$ that can be written as $f = f_1 - f_2$, where $f_1, f_2 \in \text{BLSC}_+[0,1]$. For such a function f define

$$\widetilde{I}(f) := \widetilde{I}(f_1) - \widetilde{I}(f_2).$$

Problem 5. (a) Prove that $\mathcal{L}[0,1]$ is a vector space.

Then it clearly becomes a normed space with the uniform norm $||f|| := \sup_{x \in [0,1]} |f(x)|$.

(b) Prove that \widetilde{I} is a positive linear functional on $\mathcal{L}[0, 1]$. Then in particular \widetilde{I} is continuous on $\mathcal{L}[0, 1]$.