HOMEWORK 4 THE RIESZ-MARKOV-KAKUTANI REPRESENTATION THEOREM

Problem 1. Let (X, d) be a metric space, let $A \subset X$ and define the function $d_A \colon X \to \mathbb{R}$ by

$$d_A(x) := \operatorname{dist}(x, A) = \inf \left\{ d(x, a) \colon a \in A \right\}.$$

Show the following:

(a) Let $L \subset X$ be a closed set. Then

$$d_L(x) = 0 \iff x \in L.$$

(b) For any $A \subset X$, the function d_A is continuous.

Problem 2. Let K be a compact subset of \mathbb{R} and let U be an open subset of \mathbb{R} such that

$$K \subset U.$$

Prove the following refinement of Urysohn's lemma: there is *continuous* function $f : \mathbb{R} \to \mathbb{R}$, with compact support, such that

$$f(x) = 0$$
 if $x \in K$ and supp $(f) \subset U$,

where $\operatorname{supp}(f)$ is the topological support of f.

Hint: Let $L := U^{\complement}$, which is a closed set.

It would *not* be enough to apply Urysohn's lemma to K and L. You should instead apply it to K and to a slightly increased version of L.

Let $I: C[0,1] \to \mathbb{R}$ be a positive linear functional.

We denote by $BLSC_+[0,1]$ the family of all bounded, *lower semi continuous* functions $f: [0,1] \to \mathbb{R}$ with $f \ge 0$.

For every $f \in \text{BLSC}_{+}[0, 1]$ we define the extension

$$V(f) := \sup \{ I(g) : g \in C[0,1] \text{ and } 0 \le g \le f \}.$$

Since for every open set $U \subset [0,1]$, the function $\mathbf{1}_U \in \text{BLSC}_+[0,1]$, we may then define

$$\mu_0(U) := \widetilde{I}(\mathbf{1}_U)$$

Problem 3. Show that

$$\mu_0(U) = \sup \{ I(g) : g \in C[0,1], 0 \le g \le 1 \text{ and } \sup (g) \subset U \}.$$

Hint: Use the result in Problem 2.

Problem 4. Prove that for any $f \in \text{BLSC}_+[0,1]$ we have

$$I(f) \le I(\mathbf{1}) \, \|f\|,$$

where **1** denotes the constant function taking the value 1.

Problem 5. Let $f_1, f_2, \ldots \in \text{BLSC}_+[0, 1]$ be a sequence of functions such that $f_n \to f$, where f is continuous and $f_n \ge f$ for all n. Show that

$$I(f_n) \to I(f).$$