DIRICHLET CHARACTERS AND PRIMES IN ARITHMETIC PROGRESSIONS

We plan to prove the following.

Theorem 1 (Dirichlet’s Theorem). Let \((a, k) = 1\). Then the arithmetic progression
\[\{a + nk : n = 0, 1, 2, \ldots\} = \{m : m \equiv a \mod k\} \]
contains infinitely many primes.

Euler gave an analytic proof of the infinitude of primes by showing that
\[\sum_{p \leq x} \frac{1}{p} \to \infty. \]
In doing so he used properties of the zeta function
\[\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_p \left(1 - \frac{1}{p^s}\right)^{-1}. \]

We will attempt something similar and show that
\[\sum_{p \leq x, p \equiv a \mod k} \frac{1}{p} \to \infty \]
(for technical reasons we will in fact demonstrate the divergence of \(\sum_{p \equiv a \mod k} \frac{\log p}{p}\)).

Note that the above sum can be written as \(\sum_p f_{a,k}(p)/p\) where \(f_{a,k}\) is the characteristic function of the property \(p \equiv a \mod k\). For example, one could take \(f_{a,k}(p) = \lfloor |\cos(\pi(p - a)/k)| \rfloor\) but this is superficial and no good to anybody. It would be nice if our function, or some slight variant, made sense as the coefficients of a Dirichlet series and allowed for an Euler product. This would already imply more depth than our previous example for \(f_{a,k}\).

1. Dirichlet characters

Definition 1. A Dirichlet Character modulo \(k\) is an arithmetic function \(\chi : \mathbb{N} \to \mathbb{C}\) satisfying

1. \(\chi(n + k) = \chi(n) \ \forall n \in \mathbb{N}\)
2. \(\chi(mn) = \chi(m)\chi(n) \ \forall m, n \in \mathbb{N}\)
3. \(\chi(n) \neq 0 \iff (n, k) = 1.\)
Definition 2. The principal character modulo k is the unique Dirichlet character χ_1 such that $\chi_1(n) = 1 \iff (n, k) = 1$.

Firstly, note that $\chi(1) = 1$ since for $(n, k) = 1$ we have $0 \neq \chi(n) = \chi(1 \cdot n) = \chi(1)\chi(n)$. Also, note that χ’s non-zero values are $\phi(k)$th-roots of unity since for $(n, k) = 1$, we have $n^{\phi(k)} \equiv 1 \mod k$ and hence $\chi(n)^{\phi(k)} = \chi(n^{\phi(k)}) = \chi(1 + mk) = \chi(1) = 1$.

Examples

1. $k = 1$: One character, $\chi(n) = 1 \forall n$.
2. $k = 2$: One character, $\chi(n) = 1$ for n odd, $\chi(n) = 0$ for n even.
3. $k = 3$: We have χ_1. Suppose $\chi \neq \chi_1$. Then $\chi(2) \neq 1$ and $\chi(2)^2 = \chi(4) = \chi(1) = 1$ hence $\chi(2) = -1$.
4. $k = 4$: Similar to $k = 3$.

Note that by periodicity we only need consider one representative n from a given residue class $\bar{n} \mod k$. Also, we may restrict attention to those representatives n with $(n, k) = 1$ since $\chi(n) = 0$ otherwise. In other words, we can restrict our attention to the group $(\mathbb{Z}/k\mathbb{Z})^\times$ of units modulo k. By their multiplicative property, we see that any given Dirichlet character $\chi : \mathbb{N} \to \mathbb{C}$ induces a homomorphism $\chi^* : (\mathbb{Z}/k\mathbb{Z})^\times \to \mathbb{C}^\times = GL_1(\mathbb{C})$, $\bar{n} \mapsto \chi(n)$. Conversely, given a homomorphism $f : (\mathbb{Z}/k\mathbb{Z})^\times \to \mathbb{C}^\times$ we can acquire a Dirichlet character by setting $\chi(n) = f(\bar{n})$ when $(n, k) = 1$ and $\chi(n) = 0$ when $(n, k) > 1$.

If we view the set of Dirichlet characters mod k as homomorphisms from $(\mathbb{Z}/k\mathbb{Z})^\times \to \mathbb{C}^\times$ then they form a group when equipped with the pointwise multiplication defined by $(\chi \cdot \chi')(n) = \chi(n)\chi'(n)$. The identity element is given by χ_1 and the inverse of an element χ is given by $\overline{\chi}$ since $(\chi \cdot \overline{\chi})(n) = |\chi(n)|^2 = 1 = \chi_1(n)$. This means that the Dirichlet characters modulo k can be thought of as the elements of something called the dual group \hat{G} of the group $G = (\mathbb{Z}/k\mathbb{Z})^\times$. A famous result of harmonic analysis (Pontryagin Duality) implies that G is isomorphic to \hat{G}, and hence we have the first part of the following theorem.

Theorem 2. There are exactly $\phi(k)$ Dirichlet characters modulo k. Also, for any given n coprime to k with $n \not\equiv 1 \mod k$ there exists a χ such that $\chi(n) \neq 1$.

Theorem 3 (Orthogonality). Let k be a positive integer and let χ be a Dirichlet character modulo k. Then

\[
\sum_{n=1}^{k} \chi(n) = \begin{cases}
\phi(k) & \text{if } \chi = \chi_1 \\
0 & \text{otherwise}
\end{cases}.
\]
Let \(n \) be a positive integer. Then

\[
\sum_{\chi \mod k} \chi(n) = \begin{cases}
\phi(k) & \text{if } n \equiv 1 \mod k, \\
0 & \text{otherwise},
\end{cases}
\]

where the summation is over all Dirichlet characters mod \(k \). Let \(\chi, \chi' \) be Dirichlet characters mod \(k \). Then

\[
\sum_{n=1}^{k} \chi(n)\overline{\chi'}(n) = \begin{cases}
\phi(k) & \text{if } \chi = \chi', \\
0 & \text{otherwise}.
\end{cases}
\]

For positive integers \(n_1, n_2 \) we have

\[
\sum_{\chi \mod k} \chi(n_1)\overline{\chi}(n_2) = \begin{cases}
\phi(k) & \text{if } n_1 \equiv n_2 \mod k \text{ and } (n_1, k) = 1, \\
0 & \text{otherwise}.
\end{cases}
\]

Proof. For the first sum the result is obvious if \(\chi = \chi_1 \). If \(\chi \neq \chi_1 \) then pick an \(m \) with \((m, k) = 1 \) such that \(\chi(m) \neq 1 \). Then as \(n \) runs through a reduced residue system mod \(k \) so does \(mn \). Therefore,

\[
\chi(m) \sum_{n=1}^{k} \chi(n) = \sum_{n=1}^{k} \chi(mn) = \sum_{n=1}^{k} \chi(n)
\]

and the result follows.

For the second sum note that if \((n, k) > 1 \) then all terms in the sum are zero. If \(n \equiv 1 \mod k \) then \(\chi(n) = \chi(1) = 1 \) for all characters and so the sum simply equals the number of characters mod \(k \), which is \(\phi(k) \) by Theorem 2. So now suppose that \((n, k) = 1 \) and that \(n \neq 1 \mod k \). Pick a \(\chi' \) such that \(\chi'(n) \neq 1 \). Then as \(\chi \) runs over the characters mod \(k \) so does \(\chi' \chi \), since they form a group. Therefore,

\[
\chi'(n) \sum_{\chi} \chi(n) = \sum_{\chi} \chi'(n)\chi(n) = \sum_{\chi} (\chi' \cdot \chi)(n) = \sum_{\chi} \chi(n)
\]

and the sum is therefore equal to zero in this case.

For the third sum take \(\chi = \chi\overline{\chi}' \) in (1). Finally, for the fourth sum note that if either \((n_1, k) \) or \((n_2, k) \) is \(> 1 \) then the sum is zero. So suppose \((n_1, k) = (n_2, k) = 1 \) and let \(\overline{n_2} \) denote the inverse of \(n_2 \) modulo \(k \) i.e. the number satisfying \(n_2\overline{n_2} \equiv 1 \mod k \). We now apply (2) with \(n = n_1\overline{n_2} \). The sum in question is given by

\[
\sum_{\chi} \chi(n) = \sum_{\chi} \chi(n_1)\chi(\overline{n_2}) = \sum_{\chi} \chi(n_1)\overline{\chi}(n_2).
\]

This last equality follows on noting that \(\chi(n_1)\chi(\overline{n_2}) = \chi(n_2\overline{n_2}) = \chi(1) = 1 \) and hence \(\chi(\overline{n_2}) = \overline{\chi(n_2)} \) since \(\chi \) maps onto the unit circle for integers coprime to \(k \). If \(n_1 \equiv n_2 \)
mod \(k \) then \(n \equiv 1 \mod k \) and the above sum equals \(\phi(k) \) by (2). If \(n_1 \not\equiv n_2 \mod k \) then \(n \not\equiv 1 \mod k \) and the remaining case follows.

2. Dirichlet \(L \)-functions

Let \(\chi \) be a Dirichlet character mod \(k \). Then the Dirichlet \(L \)-function associated to \(\chi \) is given by

\[
L(s, \chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}, \quad s = \sigma + it
\]

\textbf{Proposition 2.1.} The series for \(L(s, \chi) \) converges absolutely for \(\sigma > 1 \) and for fixed \(\delta > 0 \) it converges uniformly for \(\sigma \geq 1 + \delta \). It is therefore analytic in the region \(\sigma > 1 \).

\textit{Proof.} Postponed.

The derivative of \(L(s, \chi) \) is given by the series

\[
L'(s, \chi) = -\sum_{n=1}^{\infty} \frac{\chi(n) \log n}{n^s}.
\]

\textbf{Proposition 2.2.} If \(\chi \neq \chi_1 \) then \(L(s, \chi) \) and \(L'(s, \chi) \) converge (conditionally) for \(\sigma > 0 \). In particular, their values at \(s = 1 \) are defined.

\textit{Proof.} If \(\chi \neq \chi_1 \) then by partial summation we have

\[
\sum_{n \leq x} \frac{\chi(n)}{n^s} = \frac{1}{x^s} \sum_{n \leq x} \chi(n) + s \int_{1}^{x} \left[\sum_{n \leq t} \chi(n) \right] t^{-s-1} dt.
\]

By (1) the sums \(\sum_{n \leq x} \chi(n) \) are bounded. Therefore

\[
\sum_{n \leq x} \frac{\chi(n)}{n^s} \ll x^{-\sigma} + s \int_{1}^{x} t^{-\sigma-1} dt.
\]

This last expression is \(O(1) \) for \(\sigma > 0 \) and so the result follows on letting \(x \to \infty \). For the result involving the derivative just use \(\log t \ll t^\epsilon \) in the above.

The following is not absolutely necessary for our purposes but it does give more meaning to some of our results.

\textbf{Theorem 4 (Euler product).} For \(\sigma > 1 \) we have the absolutely convergent product

\[
L(s, \chi) = \prod_{p} \left(1 - \frac{\chi(p)}{p^s} \right)^{-1}.
\]
Also, for $\sigma > 1$ we have

\[(10) \quad \frac{1}{L(s, \chi)} = \sum_{n=1}^{\infty} \frac{\mu(n)\chi(n)}{n^s}\]

and the sum is absolutely convergent in this region.

Proof. Note the factors in the product are the sums of geometric series:

\[
\left(1 - \frac{\chi(p)}{p^s}\right)^{-1} = \sum_{m=0}^{\infty} \frac{\chi(p^m)}{p^{ms}}.
\]

Taking the product over primes less than a given x gives

\[
\prod_{p \leq x} \sum_{m=0}^{\infty} \frac{\chi(p^m)}{p^{ms}} = \sum_{p_1, \ldots, p_j \leq x} \frac{\chi(p_1^{m_1} \cdots p_j^{m_j})}{(p_1^{m_1} \cdots p_j^{m_j})^s} = \sum_{n \in A(x)} \frac{\chi(n)}{n^s}
\]

where $A(x) = \{n \in \mathbb{N} : p|n \implies p \leq x\}$. Clearly, $\lim_{x \to \infty} A(x) = \mathbb{N}$. Now,

\[
L(s, \chi) - \sum_{n \in A(x)} \frac{\chi(n)}{n^s} \ll \sum_{n > x} \frac{\chi(n)}{n^s} \to 0
\]

as $x \to \infty$ since the series $\sum_{n=1}^{\infty} \chi(n)n^{-s}$ is convergent for $\sigma > 1$.

Since an absolutely convergent product of non-zero terms is non-zero we see that $L(s, \chi) \neq 0$ for $\sigma > 1$. Taking the reciprocal gives

\[
\frac{1}{L(s, \chi)} = \prod_p \left(1 - \frac{\chi(p)}{p^s}\right).
\]

Expanding this product we see that the resultant series has coefficients $\mu(n)\chi(n)$ and so (10) follows. If the rigour police show up then just use the previous argument. Absolute convergence of the series follows on applying the integral test after using $|\mu(n)\chi(n)| \leq 1$ and $|n^s| = n^\sigma$.

\[\square\]

3. **Dirichlet’s Theorem**

We are now in a position to prove Dirichlet’s Theorem. We shall in fact prove the following

Theorem 5. Suppose $(a, k) = 1$. Then

\[(11) \quad \sum_{\substack{p \leq x \\ p \equiv a \mod k}} \frac{\log p}{p} = \frac{1}{\phi(k)} \log x + O(1).\]

The starting point is to use (4) as a suitable characteristic function.
Lemma 3.1. Let $(a, k) = 1$. Then

$$\sum_{p \leq x, \ p \equiv a \mod k} \frac{\log p}{p} = \frac{1}{\phi(k)} \log x + \frac{1}{\phi(k)} \sum_{\chi \neq \chi_1} \chi(a) \sum_{p \leq x} \frac{\chi(p) \log p}{p} + O(1)$$

Proof. By (4) we have

$$\sum_{p \leq x, \ p \equiv a \mod k} \frac{\log p}{p} = \sum_{p \leq x} \frac{\log p}{p} \left[\frac{1}{\phi(k)} \sum_{\chi} \bar{\chi}(a) \chi(p) \right]$$

$$= \frac{1}{\phi(k)} \sum_{p \leq x} \frac{\log p}{p} \left[\chi_1(p) + \sum_{\chi \neq \chi_1} \bar{\chi}(a) \chi(p) \right]$$

$$= \frac{1}{\phi(k)} \sum_{p \leq x} \chi_1(p) \log p + \frac{1}{\phi(k)} \sum_{\chi \neq \chi_1} \bar{\chi}(a) \sum_{p \leq x} \frac{\chi(p) \log p}{p}.$$

Now,

$$\sum_{p \leq x} \frac{\chi_1(p) \log p}{p} = \sum_{p \leq x, \ (p, k) = 1} \frac{\log p}{p} = \left[\sum_{p \leq x} - \sum_{p \leq x, \ p \mid k} \right] \frac{\log p}{p}$$

$$= \sum_{p \leq x, \ (p, k) = 1} \frac{\log p}{p} + O(1)$$

$$= \log x + O(1).$$

The above Lemma implies that if we can show

$$\sum_{p \leq x} \frac{\chi(p) \log p}{p} = O(1)$$

for $\chi \neq \chi_1$, then Dirichlet’s Theorem will follow. This is now our main focus.

Informal Discussion: As we have seen before, incorporating prime powers into a sums involving $\log p$ usually just adds an $O(1)$ term. So we can expect

$$\sum_{p \leq x} \frac{\chi(p) \log p}{p} = \sum_{n \leq x} \frac{\chi(n) \Lambda(n)}{n} + O(1)$$

where $\Lambda(n) = \log p$ if $n = p^m$ and $\Lambda(n) = 0$ otherwise. Why are we always adding in prime power terms if it doesn’t really change anything? Well, this latter sum admits a more concise description as the partial sums of the series for $-L'(1, \chi)/L(1, \chi)$.
Indeed, on logarithmic differentiation of the Euler product:
\[L(s, \chi) = \prod_p (1 - \chi(p) p^{-s})^{-1}, \]
we have
\[
- \frac{L'(s, \chi)}{L(s, \chi)} = \sum_p \frac{\log p}{1 - \chi(p) p^{-s}} = \sum_p \sum_{m=0}^\infty (\log p) \chi(p^m) p^{-ms} = \sum_{n=1}^\infty \frac{\chi(n) \Lambda(n)}{n^s}.
\]

From this we see that
\[
\sum_{p \leq x} \frac{\chi(p) \log p}{p} \approx - \frac{L'(1, \chi)}{L(1, \chi)}
\]
and this is bounded as long as \(L(1, \chi) \neq 0 \). We now attempt to make our discussion into a more rigorous argument. Our first step is to demonstrate a relationship similar to (16), but in a more quantitative form. We then show that this form is bounded if \(L(1, \chi) \neq 0 \) for \(\chi \neq \chi_1 \). Finally, we prove the latter.

Lemma 3.2. We have
\[
\sum_{p \leq x} \frac{\chi(p) \log p}{p} = \sum_{n \leq x} \frac{\chi(n) \Lambda(n)}{n} + O(1).
\]

Proof. We have
\[
\sum_{n \leq x} \frac{\chi(n) \Lambda(n)}{n} = \sum_{p \leq x} \frac{\chi(p^m) \log p}{p^m} = \sum_{p \leq x} \frac{\chi(p) \log p}{p} + \sum_{p^m \leq x, m \geq 2} \frac{\chi(p^m) \log p}{p^m}.
\]
Now, the second sum in the above is \(\ll \) than
\[
\sum_p \log p \sum_{m \geq 2} \frac{1}{p^m} = \sum_p \frac{\log p}{p(p-1)} \ll \sum_n \frac{\log n}{n(n-1)} = O(1).
\]

Lemma 3.3. For \(\chi \neq \chi_1 \) we have
\[
\sum_{p \leq x} \frac{\chi(p) \log p}{p} = -L'(1, \chi) \sum_{n \leq x} \frac{\mu(n) \chi(n)}{n} + O(1).
\]
Proof. By the previous Lemma and the fact that $\Lambda(n) = \sum_{d|n} \mu(d) \log(n/d)$ we have

$$\sum_{p \leq x} \frac{\chi(p) \log p}{p} + O(1) = \sum_{n \leq x} \frac{\chi(n)\Lambda(n)}{n} = \sum_{n \leq x} \frac{\chi(n)}{n} \sum_{d|n} \mu(d) \log(n/d)$$

(20)

$$= \sum_{d \leq x} \frac{\chi(d)\mu(d)}{d} \sum_{m \leq x/d} \frac{\chi(m) \log m}{m}$$

after rearranging in terms of the divisors d and using the multiplicative properties of χ. Now,

$$-L'(1, \chi) = \sum_{m=1}^{\infty} \frac{\chi(m) \log m}{m} = \left[\sum_{m \leq Y} \sum_{m \geq Y} \frac{\chi(m) \log m}{m} \right],$$

and

$$\sum_{m \geq Y} \frac{\chi(m) \log m}{m} = -\left[\sum_{n \leq Y} \frac{\chi(n) \log Y}{Y} - \int_{Y}^{\infty} \left[\sum_{n \leq t} \frac{\chi(n)}{n} \right] \left(\log t \right)' \frac{dt}{t} \right] \ll \frac{\log Y}{Y}.$$

Here we have used the fact that $\chi \neq \chi_1$ and hence the sum $\sum_{n \leq Y} \chi(n)$ is bounded. Therefore,

$$\sum_{n \leq x} \frac{\chi(n)\Lambda(n)}{n} = -L'(1, \chi) \sum_{d \leq x} \frac{\chi(d)\mu(d)}{d} + O\left(\sum_{d \leq x} \frac{1}{d} \log x/d \right)$$

(21)

$$= -L'(1, \chi) \sum_{d \leq x} \frac{\chi(d)\mu(d)}{d} + O(1)$$

since

$$\sum_{d \leq x} (\log x - \log d) = \lfloor x \rfloor \log x - x \log x + O(x) = O(x).$$

Note that by equation (10), the sum

$$\sum_{n \leq x} \frac{\mu(n)\chi(n)}{n}$$

looks a lot like $1/L(1, \chi)$ and so we have essentially established the relation (16).

Lemma 3.4. Suppose $\chi \neq \chi_1$. If $L(1, \chi) \neq 0$ then

$$\sum_{n \leq x} \frac{\mu(n)\chi(n)}{n} = O(1).$$

(22)
Proof. Note that
\[
S := \sum_{n \leq x} \frac{\mu(n) \chi(n)}{n} \sum_{m \leq x/n} \frac{\chi(m)}{m} = \sum_{m,n \leq x} \frac{\chi(mn) \mu(n)}{mn}
\]
(23) after rearranging. We now group together the terms \(mn\), writing \(mn = \ell\) say, and rearrange to give
\[
S = \sum_{\ell \leq x} \frac{\chi(\ell)}{\ell} \sum_{n|\ell} \mu(n) = 1
\]
(24) after using
\[
\sum_{n|\ell} \mu(n) = \begin{cases} 1 & \text{if } \ell = 1, \\ 0 & \text{otherwise.} \end{cases}
\]
On the other hand,
\[
S = \sum_{n \leq x} \frac{\mu(n) \chi(n)}{n} \left[L(1, \chi) - \sum_{m > x/n} \frac{\chi(m)}{m} \right]
= \sum_{n \leq x} \frac{\mu(n) \chi(n)}{n} \left[L(1, \chi) + O(n/x) \right]
\]
(25)
\[
= L(1, \chi) \sum_{n \leq x} \frac{\mu(n) \chi(n)}{n} + O \left(\frac{1}{x} \sum_{n \leq x} \chi(n) \mu(n) \right)
= L(1, \chi) \sum_{n \leq x} \frac{\mu(n) \chi(n)}{n} + O \left(\frac{1}{x} \sum_{n \leq x} \chi(n) \mu(n) \right)
\]
Since \(L(1, \chi) \neq 0\), we may divide through and the result follows. \(\square\)

4. The non-vanishing of \(L(1, \chi)\) for non-principal characters.

As the section heading suggests, we plan to prove the following.

Theorem 6. If \(\chi \neq \chi_1\) then \(L(1, \chi) \neq 0\).

The proof is split into two cases: one where \(\chi\) is real, and the other where \(\chi\) is complex. We will start with the real case.

Lemma 4.1. Suppose \(\chi\) is a real Dirichlet character mod \(k\). Let
\[
A(n) = \sum_{d|n} \chi(d).
\]
(26)
Then $A(n) \geq 0$ for all n and $A(n) \geq 1$ if n is a square.

Proof. First note $A(n)$ is multiplicative since it is the convolution of two multiplicative functions, namely $1(n) := 1 \forall n$ and $\chi(n)$. Therefore, it is determined by its values at prime powers. We have

\[
\begin{align*}
\chi(p) = 0 & \implies A(p^\alpha) = 1, \\
\chi(p) = 1 & \implies A(p^\alpha) = d(p^\alpha) = \alpha + 1, \\
\chi(p) = -1 & \implies A(p^\alpha) = \begin{cases} 1 & \text{if } \alpha \text{ is even}, \\
0 & \text{if } \alpha \text{ is odd}.
\end{cases}
\end{align*}
\]

Writing $n = \prod_p p^{\alpha_p}$ we see $A(n) = \prod_p A(p^{\alpha_p})$ and hence $A(n) \geq 0$ for all n. If n is square then all the powers α_p in the prime decomposition of n are even and so $A(n) \geq 1$. \hfill \square

Proposition 4.2. Suppose χ is a real non-principal Dirichlet character mod k. Let

\[B(x) = \sum_{n \leq x} \frac{A(n)}{n^{1/2}}. \tag{27} \]

Then

1. $B(x) \to \infty$ as $x \to \infty$.
2. $B(x) = 2x^{1/2}L(1, \chi) + O(1)$ and hence $L(1, \chi) \neq 0$.

Proof. For the first part note that by the Lemma

\[
B(x) \geq \sum_{n \leq x} \frac{A(n)}{n^{1/2}} \geq \sum_{n \leq x} \frac{1}{n^{1/2}} = \sum_{m \leq x^{1/2}} \frac{1}{m} \sim \frac{1}{2} \log x \to \infty.
\]

For the second part we have

\[
B(x) = \sum_{n \leq x} \frac{1}{n^{1/2}} \sum_{d|n} \chi(d) = \sum_{d \leq x} \frac{\chi(d)}{d^{1/2}} \sum_{m \leq x/d} \frac{1}{m^{1/2}}, \text{ after rearranging}
\]

\[
= \sum_{d \leq x} \frac{\chi(d)}{d^{1/2}} \left[2 \left(\frac{x}{d} \right)^{1/2} + O(1) \right], \text{ using Euler summation}
\]

\[= 2x^{1/2} \sum_{d \leq x} \frac{\chi(d)}{d} + O\left(\sum_{d \leq x} \chi(d)d^{-1/2} \right)
\]

\[= 2x^{1/2} \left(L(1, \chi) - \sum_{d > x} \frac{\chi(d)}{d} \right) + O(1)
\]

\[= 2x^{1/2} L(1, \chi) + O(1) \tag{28}
\]
where we have used

\[\sum_{d > x} \frac{\chi(d)}{d} = -\frac{1}{x} \sum_{d \leq x} \chi(d) + \int_{x}^{\infty} \sum_{d \leq t} \chi(d) \frac{1}{t^2} dt = O(x^{-1}). \]

We can now turn to the case where \(\chi \) is complex. We will proceed towards a contradiction.

Lemma 4.3. If \(\chi \neq \chi_1 \) and \(L(1, \chi) = 0 \) then

(29) \[L'(1, \chi) \sum_{n \leq x} \frac{\mu(n) \chi(n)}{n} = \log x + O(1). \]

Proof. We have

\[S := \sum_{n \leq x} \frac{\mu(n) \chi(n)}{n} \sum_{m \leq x/n} \frac{\chi(m) \log(x/mn)}{m} \]

(30) \[= \sum_{m,n \leq x} \frac{\mu(n) \chi(mn) \log(x/mn)}{mn}. \]

Once again, we group together the terms \(mn \), writing \(mn = \ell \) say, and rearrange to give

(31) \[S = \sum_{\ell \leq x} \frac{\chi(\ell) \log(x/\ell)}{\ell} \sum_{n | \ell} \mu(n) = \log x \]

after using

\[\sum_{n | \ell} \mu(n) = \begin{cases} 1 & \text{if } \ell = 1, \\ 0 & \text{otherwise}. \end{cases} \]
On the other hand,

\[
S = \sum_{n \leq x} \frac{\mu(n) \chi(n)}{n} \left[\sum_{m \leq x/n} \frac{\chi(m)}{m} (-\log m + \log(x/n)) \right]
\]

\[
= \sum_{n \leq x} \frac{\mu(n) \chi(n)}{n} \left[-\sum_{m \leq x/n} \frac{\chi(m) \log m}{m} + \log(x/n) \sum_{m \leq x/n} \frac{\chi(m)}{m} \right]
\]

\[
= \sum_{n \leq x} \frac{\mu(n) \chi(n)}{n} \left[\left(L'(1, \chi) + \sum_{m > x/n} \frac{\chi(m) \log m}{m} \right) \right.
\]

\[
\quad + \log(x/n) \left(L(1, \chi) - \sum_{m > x/n} \frac{\chi(m)}{m} \right) \bigg]
\]

\[
= \sum_{n \leq x} \frac{\mu(n) \chi(n)}{n} \left[L'(1, \chi) + O \left(\frac{\log(x/n)}{x/n} \right) \right.
\]

\[
\quad + \log(x/n) \left(L(1, \chi) - \sum_{m > x/n} \frac{\chi(m)}{m} \right) \bigg].
\]

(32)

Since we’re assuming \(L(1, \chi) = 0 \) this equals

\[
L'(1, \chi) \sum_{n \leq x} \frac{\mu(n) \chi(n)}{n} + O \left(\frac{1}{x} \sum_{n \leq x} \log(x/n) \right).
\]

(33)

The result now follows on noting that the sum in ‘big O’ term is \(\ll x \), as has been seen previously. \(\square \)

Let

\[
S(k) = \left\{ \chi \mod k : \chi \neq \chi_1, \ L(1, \chi) = 0 \right\}
\]

(34)

and let

\[
N(k) = |S(k)|.
\]

(35)

Now, if \(L(1, \chi) = 0 \) then \(L(1, \overline{\chi}) = 0 \) and so if \(\chi \in S(k) \) then \(\overline{\chi} \in S(k) \) (note these characters are distinct since \(\chi \neq \overline{\chi} \) for complex characters). Therefore, \(N(k) \) is even.

Proposition 4.4. We have

\[
\sum_{\substack{p \leq x \\backslash \\phi(k)}} \frac{\log p}{p} = \frac{1 - N(k)}{\phi(k)} \log x + O(1).
\]

(36)
This implies that \(N(k) = 0 \) since otherwise \(N(k) \geq 2 \) and hence the right hand side of the above would be negative for large enough \(x \), contrary to the sum on the left being made up solely of positive terms.

Proof. By Lemmas 3.1 and 3.3 we have

\[
\sum_{\substack{p \leq x \\
p \equiv 1(k)}} \frac{\log p}{p} = \frac{1}{\phi(k)} \log x + \frac{1}{\phi(k)} \sum_{\chi \neq 1} \sum_{p \leq x} \frac{\chi(p) \log p}{p} + O(1)
\]

\begin{equation}
= \frac{1}{\phi(k)} \log x - \frac{1}{\phi(k)} \sum_{\chi \neq 1} L'(1, \chi) \sum_{n \leq x} \frac{\mu(n) \chi(n)}{n} + O(1).
\end{equation}

(37)

Now, by Lemma 3.4 the sum over \(n \leq x \) is \(O(1) \) if \(L(1, \chi) \neq 0 \). If \(L(1, \chi) = 0 \) then the sum times \(L'(1, \chi) \) is \(\log x + O(1) \) by Lemma 4.3. Therefore, after writing \(1_P \) for the characteristic function of a given property \(P \), we have

\[
\sum_{\substack{p \leq x \\
p \equiv 1(k)}} \frac{\log p}{p} = \frac{1}{\phi(k)} \log x - \frac{1}{\phi(k)} \sum_{\chi \neq 1} \left[1_{L(1, \chi) \neq 0} \cdot O(1) \right] + \left[1_{L(1, \chi) = 0} \cdot \left(\log x + O(1) \right) \right] + O(1)
\]

\begin{equation}
= \frac{1}{\phi(k)} \log x - \frac{N(k)}{\phi(k)} \log x + O(1).
\end{equation}

(38)

\(\square \)