1.1.1. Proposition. The inequalities

$$
\log (2) x-\log (4 x) \leq \psi(x) \leq 2 \log (2) x+\frac{\log ^{2}(x)}{\log (2)}
$$

hold for $x \geq 1$.
Proof. The terms in the last sum in the computation

$$
\begin{aligned}
T(x)-2 T\left(\frac{x}{2}\right) & =\sum_{n \leq x} \log (n)-2 \sum_{m \leq x / 2} \log (m) \\
& =\sum_{n \leq x} \log (n)-2 \sum_{2 m \leq x} \log (2 m)+2 \sum_{2 m \leq x} \log (2) \\
& =\sum_{n \leq x}(-1)^{n-1} \log (n)+2\left[\frac{x}{2}\right] \log (2)
\end{aligned}
$$

alternate in sign and increase in magnitude. So

$$
\left|T(x)-2 T\left(\frac{x}{2}\right)-2\left[\frac{x}{2}\right] \log (2)\right| \leq \log ([x])
$$

for $x \geq 1$. Thus

$$
\log (2) x-\log (4 x) \leq T(x)-2 T\left(\frac{x}{2}\right) \leq \log (2) x+\log (x)
$$

Substituting the expression

$$
T(x)=\sum_{n \leq x} \psi\left(\frac{x}{n}\right)
$$

into $T(x)-2 T(x / 2)$ yields

$$
\psi(x)-\psi\left(\frac{x}{2}\right)+\psi\left(\frac{x}{3}\right)-\cdots=T(x)-2 T\left(\frac{x}{2}\right) .
$$

Then

$$
\psi(x) \geq \log (2) x-\log (4 x)
$$

since ψ is an increasing and nonnegative function. And

$$
\psi(x)-\psi\left(\frac{x}{2}\right) \leq \log (2) x+\log (x)
$$

for the same reason. Adding up the inequalities

$$
\psi\left(\frac{x}{2^{j}}\right)-\psi\left(\frac{x}{2^{j+1}}\right) \leq \log (2) 2^{-j} x+\log \left(\frac{x}{2^{j}}\right)
$$

for $j=0,1,2, \ldots,[\log (x) / \log (2)]-1$ yields

$$
\psi(x) \leq 2 \log (2) x+\left[\frac{\log (x)}{\log (2)}\right] \log (x) \leq 2 \log (2) x+\frac{\log ^{2}(x)}{\log (2)}
$$

since $\psi\left(x / 2^{j+1}\right)=0$ when $x / 2^{j+1}<2$.
1.2.1. Bertrand's Postulate. For every $x \geq 2$ there exists at least one prime p with $x / 2<p \leq x$.

Proof. For $2 \leq x \leq 797$ the interval $(x / 2, x]$ contains a prime by a trick of E. G. H. Landau: The chain $2,3,5,7,11,17,31,59,107,211,401,797$ consists of primes and each is smaller than twice its predecessor. To detect primes in the intervals $(x / 2, x]$ for $x \geq 797$ we show that the difference $\vartheta(x)-\vartheta(x / 2)$ is positive.

Fetch the inequality

$$
\psi(x)-\psi\left(\frac{x}{2}\right)+\psi\left(\frac{x}{3}\right) \geq T(x)-2 T\left(\frac{x}{2}\right)
$$

from the proof of Proposition 1.1.1. Retention of the term $\psi(x / 3)$ is an idea due to Ramanujan. Now

$$
\begin{aligned}
\vartheta(x)-\vartheta\left(\frac{x}{2}\right) & \geq \psi(x)-2 \psi\left(x^{1 / 2}\right)-\psi\left(\frac{x}{2}\right) \\
& \geq T(x)-2 T\left(\frac{x}{2}\right)-\psi\left(\frac{x}{3}\right)-2 \psi\left(x^{1 / 2}\right) \\
& \geq \log (2) x-\log (4 x)-2 \log (2) \frac{x}{3} \\
& -\frac{\log ^{2}(x / 3)}{\log (2)}-4 \log (2) x^{1 / 2}-2 \frac{\log ^{2}\left(x^{1 / 2}\right)}{\log (2)} \\
& \geq \frac{\log (2)}{3} x-\log (4 x)-\frac{3 \log ^{2}(x)}{2 \log (2)}-4 \log (2) x^{1 / 2}
\end{aligned}
$$

by Proposition 1.1.1 and its proof. So $\vartheta(x)-\vartheta(x / 2) \geq f(x)$ with

$$
f(x)=\frac{\log (2)}{3} x-\log (4 x)-\frac{3 \log ^{2}(x)}{2 \log (2)}-4 \log (2) x^{1 / 2}
$$

The derivative

$$
f^{\prime}(x)=\frac{\log (2)}{3}-\frac{1}{x}-\frac{3 \log (x)}{x \log (2)}-\frac{2 \log (2)}{x^{1 / 2}}
$$

is an increasing function on $x \geq 797$ since $\log (x) / x$ is decreasing on $x \geq e$. Then $f^{\prime}(x)>0$ on $x \geq 797$ because $f^{\prime}(797)=0.14$. Thus $f(x)$ is increasing on this interval and hence positive there because $f(797)=1.2$.

