
1 Solution of systems of nonlinear equations

Given a system of nonlinear equations

F (x) = 0, F : Rm → Rm (1)

for which we assume that there is (at least) one solution x?. The idea is to
rewrite this system into the form

x = G(x), G : Rm → Rm. (2)

The solution x? of (1) should satisfy x? = G(x?), and is thus called a fixed point
of G. The iteration schemes becomes: given an initial guess x(0), the fixed point
iterations becomes

x(k+1) = G(x(k)), k = 1, 2, . . . . (3)

The following questions arise:
(i) How to find a suitable function G?
(ii) Under what conditions will the sequence x(k) converge to the fixed point

x??
(iii) How quickly will the sequence x(k) converge?

Point (ii) can be answered by Banach fixed point theorem:

Theorem 1.1. Let D ⊆ Rm be a convex1 and closed2 set. If

G(D) ⊆ D (4a)

and

‖G(y)−G(v)‖ ≤ L‖y − v‖, with L < 1 for all y, v ∈ D, (4b)

then G has a unique fixed point in D and the fixed point iterations (3) converges
for all x(0) ∈ D. Further,

‖x(k) − x?‖ ≤ Lk

1− L
‖x(1) − x(0)‖. (4c)

Proof. The proof is based on the Cauchy Convergence theorem, saying that a
sequence {x(k)}∞k=0 in Rm converges to some x? if and only if for every ε > 0
there is an N such that

‖x(l) − x(k)‖ < ε for all l, k > N. (5)

Assumption (4a) ensures x(k) ∈ D as long as x(0) ∈ D. From (3) and (4b) we
get:

‖x(k+1) − x(k)‖ = ‖G(x(k))−G(x(k−1))‖ ≤ L‖x(k) − x(k−1)‖ ≤ Lk‖x(1) − x(0)‖.
1D is convex if θy + (1− θ)v ∈ D for all y, v ∈ D and θ ∈ [0, 1].
2A set D ∈ Rm is closed if it contains all its limit points. A limit point of D is x ∈ Rm

such that for all neighborhoods Jx of x, Jx ∩D 6= ∅.
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We can write x(k+p) − x(k) =
∑p

i=1(x(k+i) − x(k+i−1)), thus

‖x(k+p) − x(k)‖ ≤
p∑

i=1

‖x(k+i) − x(k+i−1)‖

≤ (Lp−1 + Lp−2 + · · ·+ 1)‖x(k+1) − x(k)‖ ≤ Lk

1− L
‖x(1) − x(0)‖,

since L < 1. For the same reason, the sequence satisfy (5), so the sequence
converges to some x? ∈ D. Since the inequality is true for all p > 0 it is also
true for x?, proving (4c).

To prove that the fixed point is unique, let x? and y? be two different fixed
points in D. Then

‖x? − y?‖ = ‖G(x?)−G(y?)‖ < ‖x? − y?‖

which is impossible.

For a given problem, it is not necessarily straightforward to justify the two
assumptions of the theorem. But it is sufficient to find some L satisfying the
condition L < 1 in some norm to prove convergence.

Let x = [x1, . . . , xm]T and G(x) = [g1(x), . . . , gm(x)]T . Let y, v ∈ D, and
let x(θ) = θy + (1− θ)v be the straight line between y and v. The mean value
theorem for functions gives

gi(y)− gi(v) = gi(x(1))− gi(x(0)) =
dgi

dθ
(θ̃)(1− 0), θ̃ ∈ (0, 1)

=
m∑

j=1

∂gi

∂xj
(x̃i)(yj − vj), x̃i = θ̃y + (1− θ̃)v

since dxj(θ)/dθ = yj − vj . Then

|gi(y)− gi(v)| ≤
m∑

j=1

| ∂gi

∂xj
(x̃i)| · |yj − vj | ≤

 m∑
j=1

| ∂gi

∂xj
(x̃i)|

max
l
|yl − vl|.

If we let ḡij be some upper bound for each of the partial derivatives, that is

| ∂gi

∂xj
(x)| ≤ ḡij , for all x ∈ D.

then

‖G(y)−G(v)‖∞ =

max
i

m∑
j=1

ḡij

 ‖y − v‖∞.
We can then conclude that (4b) is satisfied if

max
i

m∑
j=1

ḡij < 1.
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Newton’s method

Newton’s method is a fixed point iterations for which

G(x(k)) = x(k) − J(x(k))−1F (x(k)),

where the Jacobian is the matrix function

J(x) =


∂f1

∂x1
(x) · · · ∂f1

∂xm
(x)

...
...

∂fm

∂x1
(x) · · · ∂fm

∂xm
(x)

 .

It is possible to prove that if i) (1) has a solution x?, ii) J(x) is nonsingular in
some open neighbourhood around x? and iii) the initial guess x(0) is sufficiently
close to x?, the Newton iterations will converge to x? and

‖x? − x(k+1)‖ ≤ K‖x? − x(k)‖2

for some positive constant K. We say that the convergence is quadratic.

Steepest descent

Steepest descent is an algorithm that search for a (local) minimum of a given
function g : Rm → R. The idea is as follows.
a) Given some point x ∈ Rm.
b) Find the direction of steepest decline of g from x (steepest descent direction)
c) Walk steady in this direction till g starts to increase again.
d) Repeat from a).

The direction of steepest descent is −∇g(x), where the gradient ∇g is given
by

∇g(x) =
[
∂g

∂x1
(x), . . . ,

∂g

∂xm
(x)
]T

.

And the steepest descent algorithm reads
function Steepest Descent(g, x(0))

for k=0,1,2,.... do
z = −∇g(x(k))/‖∇g(x(k))‖ . The steepest descent direction.
Minimize g(x(k) + αz), giving α = α?.
x(k+1) = x(k) + α?z

end for
end function

This algorithm will always converge to some point x? in which ∇g(x?) = 0,
usually a local minimum, if one exist. But the convergence can be very slow.

This can be used to find solution of the nonlinear system of equations (1)
by defining

g(x) = F (x)TF (x) = ‖F (x)‖22.
Thus, x? is a minimum of g(x) if and only if x? is a solution of F (x) = 0. In
this case, we can show that

∇g(x) = 2J(x)TF (x).

3


