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Exam preparation

April 16-17, 2024
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Spring 2014, Problem 2a)

Consider the function

f(x) := 2x− sin(x) + 2.

In order to solve the equation f(x) = 0, it is possible to apply a
fixed point iteration of the form

xk+1 = xk −
1

2
f(xk).

Question:
Show that the equation f(x) = 0 has a unique solution x̂, and that
the iteration converges for every starting value x0 ∈ R to x̂.
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Spring 2014, Problem 2a)

Answer:
We first note that x̂ is a solution of the equation f(x) = 0 iff x̂ is
a fixed point of the mapping x 7→ Φ(x).
Since f(x) = 2x− sin(x) + 2, the expression for Φ(x) becomes

Φ(x) := x− 1

2
f(x) =

1

2
sin(x)− 1

Next, we must show that our iteration is a contraction.
This requires Lipschitz continuity, hence a bound on the derivative:

sup
x∈R
|Φ′(x)| = sup

x∈R

∣∣∣∣12 cos(x)

∣∣∣∣ =
1

2
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Spring 2014, Problem 2a)

The final derivation becomes

|Φ(x)− Φ(y)| =
∣∣∣∣∫ y

x
Φ′(s) ds

∣∣∣∣
≤
∫ y

x
|Φ′(s)| ds

≤ 1

2
|x− y|

Hence, Φ is a contraction on R with contraction factor 1/2 < 1.
We can use Banachs fixed point theorem to conclude that Φ has a
unique fixed point x̂, and our fixed point iteration xk+1 = Φ(xk)
converges for all starting values x0 ∈ R to x̂.
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Spring 2014, Problem 2b)

Question:
Compute one step of the fixed point iteration with a starting value
x0 = 0. Use your result to estimate, after how many steps we have
|xk − x̂| ≤ 2−20.

Answer:
Direct insertion of x0 = 0 yields

xk+1 =
1

2
sin(0)− 1 = −1
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Spring 2014, Problem 2b)

We apply formula (1.10) in the proof of the Theorem 1.4:

|xk − x1| ≤
Lk

1− L
|x0 − x1|

Direct insertion of relevant values yields

|xk − x1| ≤
1

2k−1

For k ≥ 21, the right-hand side is smaller than or equal to 2−20.
Therefore, the required accuracy is reached after at most 21 steps.
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Spring 2017, Problem 4a)

Given the following nonlinear system of equations:

x21 + x22 = 1

x31 − x2 = 2

This system has two sets of solutions, one in the domain
−1 ≤ x1, x2 ≤ 0 and one in the domain 0 ≤ x1, x2 ≤ 1.

Question:
Set up Newton’s method for the nonlinear equation system.
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Spring 2017, Problem 4a)

Answer:
We rewrite the system of equations as

F (X) =

[
x21 + x22 − 1
x31 − x2 − 2

]
The Jacobi matrix is defined as

J(X) =

[
2x1 2x2
3x21 −1

]
Newton’s method in 2D becomes

X(n+1) = X(n) − J(X(n))−1F (X(n))
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Spring 2017, Problem 4b)

Question:
Select a set of appropriate initial values for x1 and x2 and make
two iterations of Newtons method.

Answer:
We must ensure that the Jacobian is not zero:

det(J(X)) = −2x1(1 + 3x1x2) 6= 0

The initial values must be kept away from two curves:

x1 = 0 , 3x1x2 = −1
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Spring 2017, Problem 4b)

First, we recall the formula for inversion of a 2× 2-matrix:

M =

[
a b
c d

]
=⇒ M−1 =

1

ad− bc

[
d −b
−c a

]
The inverse Jacobi-matrix is given by

J(X)−1 = − 1

2x1(1 + 3x1x2)

[
−1 −2x2
−3x21 2x1

]
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Spring 2017, Problem 4b)

Thus, we can find an explicit expression for our scheme:

X − J(X)−1F (X)

=

[
x1
x2

]
+

1

2x1(1 + 3x1x2)

[
−1 −2x2
−3x21 2x1

] [
x21 + x22 − 1
x31 − x2 − 2

]
=

1

2x1(1 + 3x1x2)

[
4x31x2 + x21 + x22 + 4x2 + 1

3x21(x
2
2 − x21 + 3)− 4x1

]
The final expression for each step is[

x1
x2

]
7→ 1

2x1(1 + 3x1x2)

[
4x31x2 + x21 + x22 + 4x2 + 1

3x21(x
2
2 − x21 + 3)− 4x1

]
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Spring 2015, Problem 2a)

Consider the matrix

A =

 9 −3 −3
−3 10 1
−3 1 5


Question:
Show that A has a unique Cholesky factorization, without
computing it.
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Spring 2015, Problem 2a)

Answer:
A is both real and symmetric, so the eigenvalues are real.

It is also strictly diagonally dominant with positive diagonal
elements, as shown below:

| − 3|+ | − 3| = 6 < 9

| − 3|+ |1| = 4 < 10

| − 3|+ |1| = 4 < 5

It follows from Gerschgorin’s Theorem that all the eigenvalues of
are positive. This in turn implies that A is positive definite.
Hence, A is symmetric positive definite (SPD) and consequently
has a unique Cholesky factorization.
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Spring 2015, Problem 2b)

Question:
Compute the Cholesky factorization of A, and use it to solve the
linear system Ax = b with b = [−9, 1.5, 5]T .

Answer:
The algorithm for Cholesky factorization yields

l11 =
√
a11 =

√
9 = 3

l21 = a21/l11 = −3/3 = −1

l31 = a31/l11 = −3/3 = −1

l22 =
√
a22 − l221 =

√
10− (−1)2 = 3

l32 = (a32 − l21l31)/l22 = (1− (−1)(−1))/3 = 0

l33 =
√
a33 − l231 − l232 =

√
5− (−1)2 − (0)2 = 2
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Spring 2015, Problem 2b)

The factorization is A = LLT , where

L =

 3 0 0
−1 3 0
−1 0 2


We must solve two separate equation systems:

Ly = b , LTx = y
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Spring 2015, Problem 2b)

The first system is solved with forward substitution:

y1 =
b1
l11

=
−9

3
= −3

y2 =
b2 − l21y1

l22
=
−1.5− (−1)(−3)

3
= −1.5

y3 =
b3 − l31y1 − l32y2

l33
=

5− (−1)(−3)− 0(−1.5)

2
= 1
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Spring 2015, Problem 2b)

The second system is solved with backward substitution:

x1 =
y3
l11

=
−9

3
= 0.5

x2 =
y2 − l32x3

l22
=
−1.5− 0(0.5)

3
= −0.5

x3 =
y1 − l31x3 − l21x2

l11
=
−3− (−1)(0.5)− (−1)(−0.5)

3
= −1

The solution of Ax = b is therefore

x = [−1,−0.5, 0.5]
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Spring 2015, Problem 2c)

Question:
Perform 1 iteration of the SOR method with relaxation parameter
ω = 1.1 for the linear system Ax = b from b). Use the starting
point x(0) = [0, 0, 0]T .
Does it look like the iterations will converge towards the solution?
Will the iterations converge for an arbitrary starting point?
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Spring 2015, Problem 2c)

Answer:
The first iteration componentwise is

x
(1)
1 = ω

b1 − a12x(0)2 − a13x
(0)
3

a11
+ (1− ω)x

(0)
1 = −1.1

x
(1)
1 = ω

b1 − a21x(0)1 − a23x
(0)
3

a22
+ (1− ω)x

(0)
2 = −0.528

x
(1)
1 = ω

b1 − a31x(0)1 − a32x
(0)
2

a33
+ (1− ω)x

(0)
3 = 0.49016
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Spring 2015, Problem 2c)

The relative error in every component is at most 10% after just a
single iteration, and the error decreases in the later components,
where we use more updated values.
The iterations will in fact converge regardless of the starting point
because A is SPD.

20 / 59



Spring 2023, Problem 1)

Question:
Verify that the matrices

M =

3 0 0
1 6 0
2 3 1

 , N =

2 6 1
0 1 0
0 0 1


give a LU decomposition of the matrix

A =

6 18 3
2 12 1
4 15 3


Use the LU decomposition to solve the linear system

Ax = (3, 19, 0)T
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Spring 2023, Problem 1)

Answer:
Direct computation yields3 0 0

1 6 0
2 3 1

2 6 1
0 1 0
0 0 1

 =

6 18 3
2 12 1
4 15 3


First, we set y = Nx and solve My = (3, 19, 0)T , which yields the
temporary solution

y = (1, 3,−11)T

Then, we return to y = Nx and solve Nx = (1, 3,−11)T , which
yields the final solution

x = (−3, 3,−11)T
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Spring 2010, Problem 1a)

Question:
Given the data set

x 1 3/2 2

y -1 3 3

Find the lowest-degree polynomial p(x) that interpolates the set.

Answer:
The Lagrange interpolation formula is

p(x) =

2∑
i=0

yili(x)
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Spring 2010, Problem 1a)

We find the component functions directly:

l1(x) =
(x− 3/2)(x− 2)

(1− 3/2)(1− 2)
= (2x− 3)(x− 2)

l2(x) =
(x− 1)(x− 2)

(3/2− 1)(3/2− 2)
= −4(x− 1)(x− 2)

l3(x) =
(x− 1)(x− 3/2)

(2− 1)(2− 3/2)
= (x− 1)(2x− 3)

The final polynomial becomes

p(x) = −1l0(x) + 3l1(x) + 3l2(x) = −8x2 + 28x− 21
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Spring 2010, Problem 1b)

Question:
Determine the constants a, b and c such that p(x) interpolates the
function

f(x) = a cos(πx) + b sin(πx) + c

in the three points (1,−1), (3/2, 3) and (2, 3).

Answer:
The system of equations is

f(1) = −a+ c = −1

f(3/2) = −b+ c = 3

f(2) = a+ c = 3

The solution is a = 2, b = −2 and c = 1.
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Spring 2010, Problem 1c)

Question:
Find an upper limit for the error |f(x)− p(x)| when x ∈ [1, 2].

Answer:
Since the interpolation point are uniformly distributed, we can
invoke the general formula

|f(x)− p(x)| ≤
(

hn+1

4(n+ 1)

)
max
1≤x≤2

|f (n+1)(x)|
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Spring 2010, Problem 1c)

We need the 3rd and 4th derivatives:

f(x) = 2[cos(πx)− sin(πx)] + 1

f (3)(x) = 2π3[sin(πx) + cos(πx)]

f (4)(x) = 2π4[cos(πx)− sin(πx)]

Setting f (4)(x) = 0 yields

tan(πx) = 1

=⇒ πx =
π

4
+ kπ

=⇒ x =
4k + 1

4
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Spring 2010, Problem 1c)

Since x ∈ [1, 2], we choose x = 5/4 and test this point, in addition
to the endpoints:

f (3)(1) = −2π3

f (3)(5/4) = −2
√

2π3

f (3)(2) = 2π3

We insert relevant values and get

|f(x)− p(x)| ≤ 1

12
(2
√

2π3)

(
1

2

)3

=
π3
√

2

48
≈ 0.9135
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Spring 2014, Problem 3a)

Denote by fn, n ∈ N, the polynomial of degree n that interpolates
the function f(x) = ex + e−x in equidistant interpolation points in
the interval [0, 1].

Question:
Show that fn(x)→ f(x) for every x ∈ R.
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Spring 2014, Problem 3a)

Answer:
For every x ∈ R and n ∈ N there exists ξ (depending on both x
and n) lying either in the interval [0, 1] or between x and the
interval [0, 1] such that

f(x)− fn(x) =
1

(n+ 1)!
f (n+1)(ξ)

n∏
i=1

(
x− i

n

)
The n-th order derivative has an analytical expression:

f(ξ) = eξ + e−ξ

=⇒ f (n)(ξ) = eξ + (−1)ne−ξ
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Spring 2014, Problem 3a)

Since ξ lies either in [0, 1] or between x and this interval, we have
the following bounds for eξ and e−ξ:

eξ ≤ max{ex, e1}
e−ξ ≤ max{e−x, e0}

Thus, we have an upper bound for the derivative:

|f (n+1)| = |eξ + (−1)ne−ξ|
≤ eξ + e−ξ

≤ max{ex, e}+ max{e−x, 1}
:= C
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Spring 2014, Problem 3a)

We have three different inequalities for the latter product term:

0 ≤ x ≤ 1 =⇒

∣∣∣∣∣
n∏
i=1

(
x− i

n

)∣∣∣∣∣ ≤ 1

x > 1 =⇒

∣∣∣∣∣
n∏
i=1

(
x− i

n

)∣∣∣∣∣ ≤ xn+1

x < 0 =⇒

∣∣∣∣∣
n∏
i=1

(
x− i

n

)∣∣∣∣∣ ≤ (−x+ 1)n+1
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Spring 2014, Problem 3a)

Since xn+1 ≤ (x+ 1)n+1 and 1 ≤ (|x|+ 1)n+1, we can sum up all
the three inequalities into one single:∣∣∣∣∣

n∏
i=1

(
x− i

n

)∣∣∣∣∣ ≤ (|x|+ 1)n+1

The final inequality for everything becomes

|f(x)− fn(x)| = C

(n+ 1)!
(|x|+ 1)n+1

We have the universal limit

lim
n→∞

(|x|+ 1)n+1

(n+ 1)!
= 0 , x ∈ R

Hence, we have shown that fn(x)→ f(x).

33 / 59



Spring 2014, Problem 3b)

Question:
Provide an estimate for

sup
0≤x≤1

|f5(x)− f(x)|

Answer:
For equidistant interpolation points on the interval [0, 1] we have
the universal estimate

sup
0≤x≤1

|f(x)− fn(x)| ≤ hn+1

4(n+ 1)
sup

0≤x≤1
|f (n+1)(x)|
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Spring 2014, Problem 3b)

Since h = 1/n and n = 5, we obtain

sup
0≤x≤1

|f(x)− f5(x)| ≤ 1

56 · 4 · 6
sup

0≤x≤1
|ex + e−x|

Since ex + e−x is convex, it attains its maximum on the interval’s
boundary. Thus

sup
0≤x≤1

|ex + e−x| = e+ e−1

Combining all values yields

sup
0≤x≤1

|f(x)− f5(x)| ≤ e+ e−1

375000
≈ 8.23 · 10−6
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Continuation 2013, Problem 3)

Question:
Find coefficients a and b such that the expression∫ 1

−1
[ax2 + b sin(x)− ex]2 dx

is as small as possible.

Answer:
This is a least squares problem:

min
a,b∈R

∫ 1

−1
I(a, b;x) dx

The optimum is found by setting the gradient equal to zero:

∇a,b
(∫ 1

−1
I(a, b;x) dx

)
= 0
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Continuation 2013, Problem 3)

First, find the gradient of the integrand I with respect to a and b:

I = [ax2 + b sin(x)− ex]2

∂I

∂a
= 2[ax2 + b sin(x)− ex] · x2

∂I

∂b
= 2[ax2 + b sin(x)− ex] · sin(x)

By setting the gradient of the integrand equal to 0 and writing the
system on matrix form, we get[ ∫ 1

−1 x
4 dx

∫ 1
−1 x

2 sin(x) dx∫ 1
−1 x

2 sin(x) dx
∫ 1
−1 sin2(x) dx

] [
a
b

]
=

[ ∫ 1
−1 x

2ex dx∫ 1
−1 e

x sin(x) dx

]
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Continuation 2013, Problem 3)

The off-diagonal elements are zero due to odd integrands:∫ 1

−1
x2 sin(x) dx = 0

The diagonal elements are∫ 1

−1
x4 dx =

2

5
,

∫ 1

−1
sin2(x) dx = 1− sin(2)

2

The right-hand side elements are∫ 1

−1
x2ex dx = e− 5e−1∫ 1

−1
ex sin(x) dx = sin(1) cosh(1)− cos(1) sinh(1)
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Continuation 2013, Problem 3)

Since the equation system has a diagonal matrix, we can solve it
trivially and obtain the final values directly:

a =

∫ 1
−1 x

2ex dx∫ 1
−1 x

4 dx
, b =

∫ 1
−1 e

x sin(x) dx∫ 1
−1 sin2(x) dx

Explicitly, we get the expressions

a =
5[e− 5e−1]

2

b =
2[sin(1) cosh(1)− cos(1) sinh(1)]

2− sin(2)
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Continuation 2013, Problem 5)

Question:
Estimate the value of the integral∫ 3

1
x ln(x) dx

using the composite Simpson’s rule. Choose the number of
subintervals n such that the absolute integration error is
guaranteed to not exceed 10−4.
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Continuation 2013, Problem 5)

Answer:
The error term for composite Simpson with f on [a, b] and n
subintervals is given by

e = −(b− a)5

180n4
f (4)(ξ)

For our function f = x ln(x), we have

f (4)(x) =
2

x3
, max

1≤x≤3

∣∣∣∣ 2

x3

∣∣∣∣ = 2
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Continuation 2013, Problem 5)

By inserting relevant values and using the tolerance τ = 10−4

instead of e, we get:

(3− 1)5

180n4
· 2 ≤ τ =⇒ n ≥ 2

(45τ)1/4

This yields n ≥ 7.72, and since n must be even, we get n ≥ 8.

Using the composite rule yields S = 2.9437737349, which is very
close to the exact value 4.5 ln(3)− 2 ≈ 2.943755299.
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Spring 2012, Problem 3a)

Consider the nodes

c1 =
1

6
, c2 =

1

2
, c3 =

5

6

and the corresponding quadrature formula

Q(f) = w1f(c1) + w2f(c2) + w3f(c3)

which approximates the integral
∫ 1
0 f(x) dx.

Question:
Determine the weights w1, w2, w3 so that the formula is exact for
polynomials of degree up to 2, that is

Q(P ) =

∫ 1

0
P (x) dx , P ∈ P2
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Spring 2012, Problem 3a)

Answer:
Since the interval is [0, 1] instead of [−1, 1], we must transfer the
monomials 1, x, x2, . . . to the new domain, and they become

1, (x− 1/2), (x− 1/2)2

The quadrature formula is

Q(f) = w1f(1/6) + w2f(1/2) + w3f(5/6)

From this, we get three equations:

w1 + w2 + w3 = 1

−1

3
w1 +

1

3
w3 = 0

1

9
w1 +

1

9
w3 =

1

12
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Spring 2012, Problem 3a)

The solution of the equation system is

w1 =
3

8
, w2 =

1

4
, w3 =

3

8

The final expression is

Q(f) =
3

8
f

(
1

6

)
+

1

4
f

(
1

2

)
+

3

8
f

(
1

6

)
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Spring 2012, Problem 3b)

Question:

Compute the error Ek =
∣∣∣Q(xk)−

∫ 1
0 x

k dx
∣∣∣ for the lowest integer

k such that Ek is not zero.

Answer:
We test for k = 3 first:

Q((x− 1/2)3) =
3

8

1

63
+

1

4

1

24
+

3

8

53

63
=

1

4∫ 1

0
x3 dx =

1

4
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Spring 2012, Problem 3b)

Since E3 = 0, we can proceed with k = 4:

Q((x− 1/2)4) =
3

8

1

64
+

1

4

1

24
+

3

8

54

64
=

439

2160∫ 1

0
x4 dx =

1

5

We get E4 = 7/2160 ≈ 3.24× 10−3, so k = 4.
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Continuation 2013, Problem 6a)

Consider the second order differential equation for y(t)

y′′ + y′ sin(y) = 0

with initial conditions

y(0) = 1 , y′(0) = 2

Question:
We introduce the new variables x1 = y and x2 = y′. Rewrite the
initial value problem into a system of first-order differential
equations in the variables X = [x1, x2]

T .
Denote by Xi = [x1i, x2i]

T the approximation from a numerical
method to X(ti) with ti = t0 + ih for i = 0, 1, 2, · · · . Approximate
X(0.2) for this initial value problem, by taking two steps with
Euler’s method and step size h = 0.1.
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Continuation 2013, Problem 6a)

Answer:
The system is given by[

x1
x2

]
=

[
x2

−x2 sin(x1)

]
Hence, Euler’s method becomes[

x1,i+1

x2,i+1

]
=

[
x1i
x2i

]
+ h

[
x2i

−x2i sin(x1i)

]
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Continuation 2013, Problem 6a)

If we compute directly with h = 0.1, the first two steps become

X1 =

[
1
2

]
+ 0.1

[
2

−2 sin(1)

]
=

[
1.2

1.831705803

]
X2 =

[
1.2

1.8317058030

]
+ 0.1

[
1.8317058030

−1.8317058030 sin(1.2)

]
=

[
1.8317058030
1.5509836627

]
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Continuation 2013, Problem 6b)

Question:
Consider here a general autonomous system of first-order
differential equations

X ′ = F (X)

Euler’s explicit and implicit methods read

Xn+1 = Xn + hF (Xn)

Xn+1 = Xn + hF (Xn+1)

We generate a higher order method by combining these two
methods in the following way:

1 One step of size h/2 with explicit Euler from Xn to Xn+1/2.

2 One step of size h/2 with implicit Euler from Xn+1/2 to Xn+1.

Show that we get a Runge-Kutta method. Write down its Butcher
tableau. Determine the order.
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Continuation 2013, Problem 6b)

Answer:
The two steps of our method are

Xn+1/2 = Xn +
h

2
F (Xn)

Xn+1 = Xn+1/2 +
h

2
F (Xn+1)

If we merge these steps, the resulting scheme becomes

Xn+1 = Xn + h
F (Xn) + F (Xn+1)

2

By setting K1 = F (Xn) and, K2 = F (Xn+1), we get

Xn+1 = Xn +
h(K1 +K2)

2
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Continuation 2013, Problem 6b)

The Butcher tableau for the trapezoidal method is

0 0 0
1 1/2 1/2

1/2 1/2
The order conditions read

2∑
i=1

bi =
1

2
+

1

2
= 1

2∑
i=1

bici =
1

2
· 0 +

1

2
· 1 =

1

2

2∑
i=1

bic
2
i =

1

2
· 02 +

1

2
· 12 =

1

2
6= 1

3

Our method is second order.
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Spring 2022, Problem 12a)

Consider the following boundary value problem for the unknown
function u(x):

uxx−2ux = f(x) , 0 < x < 1 , u(0) = 2 , u(1) = 1

where f(x) = sin(πx).

Question:
Construct a finite difference method using central differences to
approximate both uxx and ux with equidistant grid points on [0, 1].
In other words, obtain the discretized linear system AhU = F , and
specify what Ah, U and F are.
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Spring 2022, Problem 12a)

Answer:
If we use central difference approximation with h = 1/(M + 2) for
M + 1 intervals, then the 1st and 2nd order derivatives become

ux(xj) ≈
u(xj+1)− u(xj−1)

2h

uxx(xj) ≈
u(xj+1)− 2u(xj) + u(xj−1)

h2

Since uxx− 2ux = f(x), Ah becomes a tridiagonal matrix, given by

Ah =
1

h2
tridiag(1 + h,−2, 1− h)
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Spring 2022, Problem 12a)

By invoking boundary conditions, we obtain

U =

 U1
...
UM

 , F =


f1 − 2

h2
− 2

h
f2
...

fM−1
fM − 1

h2
+ 1

h


where Uj approximates u(xj) and fj = f(xj).
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Spring 2022, Problem 12b)

Question:
Compute the quantity limh→0+ ρ(A−1h ), where ρ is the spectral
radius. You can use the following fact without proof:
For a tridiagonal matrix tridiag(c, a, b) with bc > 0, the
eigenvalues are given by

λs = a+ 2
√
bc cos

(
sπ

M + 1

)
, s = 1, . . . ,M

Answer:

In our case Ah = h−2tridiag(1 + h,−2, 1− h), and that yields

λs =
−2 + 2

√
1− h2 cos(πsh)

h2
, s = 1, . . . ,M
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Spring 2022, Problem 12b)

The spectral radius of A−1h is found as follows:

ρ(Ah) = max |λs|

ρ(A−1h ) =
1

min |λs|
=

1

|λ1|

The following expansions around h = 0 are valid:√
1− h2 = 1− h2

2
+O(h4)

cos(πh) = 1− (πh)2

2
+O(h4)
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Spring 2022, Problem 12b)

We approximate λ1 as follows:

|λ1| = 2
1−

(
1− h2

2 +O(h4)
)(

1− (πh)2

2 +O(h4)
)

h2

= π2 + 1 +O(h2)

Thus, we have shown that

lim
h→0+

ρ(A−1h ) =
1

π2 + 1
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