MA2501 Numerical Methods Exam preparation

April 16-17, 2024

Spring 2014, Problem 2a)

Consider the function

$$
f(x):=2 x-\sin (x)+2 .
$$

In order to solve the equation $f(x)=0$, it is possible to apply a fixed point iteration of the form

$$
x_{k+1}=x_{k}-\frac{1}{2} f\left(x_{k}\right)
$$

Question:

Show that the equation $f(x)=0$ has a unique solution \hat{x}, and that the iteration converges for every starting value $x_{0} \in \mathbb{R}$ to \hat{x}.

Spring 2014, Problem 2a)

Answer:

We first note that \hat{x} is a solution of the equation $f(x)=0$ iff \hat{x} is a fixed point of the mapping $x \mapsto \Phi(x)$.
Since $f(x)=2 x-\sin (x)+2$, the expression for $\Phi(x)$ becomes

$$
\Phi(x):=x-\frac{1}{2} f(x)=\frac{1}{2} \sin (x)-1
$$

Next, we must show that our iteration is a contraction.
This requires Lipschitz continuity, hence a bound on the derivative:

$$
\sup _{x \in \mathbb{R}}\left|\Phi^{\prime}(x)\right|=\sup _{x \in \mathbb{R}}\left|\frac{1}{2} \cos (x)\right|=\frac{1}{2}
$$

Spring 2014, Problem 2a)

The final derivation becomes

$$
\begin{aligned}
|\Phi(x)-\Phi(y)| & =\left|\int_{x}^{y} \Phi^{\prime}(s) d s\right| \\
& \leq \int_{x}^{y}\left|\Phi^{\prime}(s)\right| d s \\
& \leq \frac{1}{2}|x-y|
\end{aligned}
$$

Hence, Φ is a contraction on \mathbb{R} with contraction factor $1 / 2<1$. We can use Banachs fixed point theorem to conclude that Φ has a unique fixed point \hat{x}, and our fixed point iteration $x_{k+1}=\Phi\left(x_{k}\right)$ converges for all starting values $x_{0} \in \mathbb{R}$ to \hat{x}.

Spring 2014, Problem 2b)

Question:

Compute one step of the fixed point iteration with a starting value $x_{0}=0$. Use your result to estimate, after how many steps we have $\left|x_{k}-\hat{x}\right| \leq 2^{-20}$.

Answer:

Direct insertion of $x_{0}=0$ yields

$$
x_{k+1}=\frac{1}{2} \sin (0)-1=-1
$$

Spring 2014, Problem 2b)

We apply formula (1.10) in the proof of the Theorem 1.4:

$$
\left|x_{k}-x_{1}\right| \leq \frac{L^{k}}{1-L}\left|x_{0}-x_{1}\right|
$$

Direct insertion of relevant values yields

$$
\left|x_{k}-x_{1}\right| \leq \frac{1}{2^{k-1}}
$$

For $k \geq 21$, the right-hand side is smaller than or equal to 2^{-20}.
Therefore, the required accuracy is reached after at most 21 steps.

Spring 2017, Problem 4a)

Given the following nonlinear system of equations:

$$
\begin{aligned}
& x_{1}^{2}+x_{2}^{2}=1 \\
& x_{1}^{3}-x_{2}=2
\end{aligned}
$$

This system has two sets of solutions, one in the domain $-1 \leq x_{1}, x_{2} \leq 0$ and one in the domain $0 \leq x_{1}, x_{2} \leq 1$.

Question:

Set up Newton's method for the nonlinear equation system.

Spring 2017, Problem 4a)

Answer:

We rewrite the system of equations as

$$
F(X)=\left[\begin{array}{l}
x_{1}^{2}+x_{2}^{2}-1 \\
x_{1}^{3}-x_{2}-2
\end{array}\right]
$$

The Jacobi matrix is defined as

$$
J(X)=\left[\begin{array}{cc}
2 x_{1} & 2 x_{2} \\
3 x_{1}^{2} & -1
\end{array}\right]
$$

Newton's method in 2D becomes

$$
X^{(n+1)}=X^{(n)}-J\left(X^{(n)}\right)^{-1} F\left(X^{(n)}\right)
$$

Spring 2017, Problem 4b)

Question:

Select a set of appropriate initial values for x_{1} and x_{2} and make two iterations of Newtons method.

Answer:
We must ensure that the Jacobian is not zero:

$$
\operatorname{det}(J(X))=-2 x_{1}\left(1+3 x_{1} x_{2}\right) \neq 0
$$

The initial values must be kept away from two curves:

$$
x_{1}=0 \quad, \quad 3 x_{1} x_{2}=-1
$$

Spring 2017, Problem 4b)

First, we recall the formula for inversion of a 2×2-matrix:

$$
M=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \Longrightarrow M^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

The inverse Jacobi-matrix is given by

$$
J(X)^{-1}=-\frac{1}{2 x_{1}\left(1+3 x_{1} x_{2}\right)}\left[\begin{array}{cc}
-1 & -2 x_{2} \\
-3 x_{1}^{2} & 2 x_{1}
\end{array}\right]
$$

Spring 2017, Problem 4b)

Thus, we can find an explicit expression for our scheme:

$$
\begin{aligned}
& X-J(X)^{-1} F(X) \\
= & {\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\frac{1}{2 x_{1}\left(1+3 x_{1} x_{2}\right)}\left[\begin{array}{cc}
-1 & -2 x_{2} \\
-3 x_{1}^{2} & 2 x_{1}
\end{array}\right]\left[\begin{array}{l}
x_{1}^{2}+x_{2}^{2}-1 \\
x_{1}^{3}-x_{2}-2
\end{array}\right] } \\
= & \frac{1}{2 x_{1}\left(1+3 x_{1} x_{2}\right)}\left[\begin{array}{c}
4 x_{1}^{3} x_{2}+x_{1}^{2}+x_{2}^{2}+4 x_{2}+1 \\
3 x_{1}^{2}\left(x_{2}^{2}-x_{1}^{2}+3\right)-4 x_{1}
\end{array}\right]
\end{aligned}
$$

The final expression for each step is

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \mapsto \frac{1}{2 x_{1}\left(1+3 x_{1} x_{2}\right)}\left[\begin{array}{c}
4 x_{1}^{3} x_{2}+x_{1}^{2}+x_{2}^{2}+4 x_{2}+1 \\
3 x_{1}^{2}\left(x_{2}^{2}-x_{1}^{2}+3\right)-4 x_{1}
\end{array}\right]
$$

Spring 2015, Problem 2a)

Consider the matrix

$$
\mathbf{A}=\left[\begin{array}{ccc}
9 & -3 & -3 \\
-3 & 10 & 1 \\
-3 & 1 & 5
\end{array}\right]
$$

Question:
Show that A has a unique Cholesky factorization, without computing it.

Spring 2015, Problem 2a)

Answer:
\mathbf{A} is both real and symmetric, so the eigenvalues are real.

It is also strictly diagonally dominant with positive diagonal elements, as shown below:

$$
\begin{aligned}
& |-3|+|-3|=6<9 \\
& |-3|+|1|=4<10 \\
& |-3|+|1|=4<5
\end{aligned}
$$

It follows from Gerschgorin's Theorem that all the eigenvalues of are positive. This in turn implies that \mathbf{A} is positive definite. Hence, \mathbf{A} is symmetric positive definite (SPD) and consequently has a unique Cholesky factorization.

Spring 2015, Problem 2b)

Question:

Compute the Cholesky factorization of \mathbf{A}, and use it to solve the linear system $\mathbf{A x}=\mathbf{b}$ with $\mathbf{b}=[-9,1.5,5]^{T}$.

Answer:

The algorithm for Cholesky factorization yields

$$
\begin{array}{lll}
l_{11}=\sqrt{a_{11}} & =\sqrt{9} & =3 \\
l_{21}=a_{21} / l_{11} & =-3 / 3 & =-1 \\
l_{31}=a_{31} / l_{11} & =-3 / 3 & =-1 \\
l_{22}=\sqrt{a_{22}-l_{21}^{2}} & =\sqrt{10-(-1)^{2}} & =3 \\
l_{32}=\left(a_{32}-l_{21} l_{31}\right) / l_{22} & =(1-(-1)(-1)) / 3 & =0 \\
l_{33}=\sqrt{a_{33}-l_{31}^{2}-l_{32}^{2}} & =\sqrt{5-(-1)^{2}-(0)^{2}} & =2
\end{array}
$$

Spring 2015, Problem 2b)

The factorization is $\mathbf{A}=\mathbf{L} \mathbf{L}^{T}$, where

$$
\mathbf{L}=\left[\begin{array}{ccc}
3 & 0 & 0 \\
-1 & 3 & 0 \\
-1 & 0 & 2
\end{array}\right]
$$

We must solve two separate equation systems:

$$
\mathbf{L} \mathbf{y}=\mathbf{b} \quad, \quad \mathbf{L}^{T} \mathbf{x}=\mathbf{y}
$$

Spring 2015, Problem 2b)

The first system is solved with forward substitution:

$$
\begin{array}{lll}
y_{1}=\frac{b_{1}}{l_{11}} & =\frac{-9}{3} & =-3 \\
y_{2}=\frac{b_{2}-l_{21} y_{1}}{l_{22}} & =\frac{-1.5-(-1)(-3)}{3} & =-1 . \\
y_{3}=\frac{b_{3}-l_{31} y_{1}-l_{32} y_{2}}{l_{33}} & =\frac{5-(-1)(-3)-0(-1.5)}{2} & =1
\end{array}
$$

Spring 2015, Problem 2b)

The second system is solved with backward substitution:

$$
\begin{array}{lll}
x_{1}=\frac{y_{3}}{l_{11}} & =\frac{-9}{3} & =0.5 \\
x_{2}=\frac{y_{2}-l_{32} x_{3}}{l_{22}} & =\frac{-1.5-0(0.5)}{3} & =-0 . \\
x_{3}=\frac{y_{1}-l_{31} x_{3}-l_{21} x_{2}}{l_{11}} & =\frac{-3-(-1)(0.5)-(-1)(-0.5)}{3} & =-1
\end{array}
$$

The solution of $\mathbf{A x}=\mathbf{b}$ is therefore

$$
\mathrm{x}=[-1,-0.5,0.5]
$$

Question:

Perform 1 iteration of the SOR method with relaxation parameter $\omega=1.1$ for the linear system $\mathbf{A x}=\mathbf{b}$ from \mathbf{b}). Use the starting point $x^{(0)}=[0,0,0]^{T}$.
Does it look like the iterations will converge towards the solution? Will the iterations converge for an arbitrary starting point?

Spring 2015, Problem 2c)

Answer:

The first iteration componentwise is

$$
\begin{aligned}
& x_{1}^{(1)}=\omega \frac{b_{1}-a_{12} x_{2}^{(0)}-a_{13} x_{3}^{(0)}}{a_{11}}+(1-\omega) x_{1}^{(0)}=-1.1 \\
& x_{1}^{(1)}=\omega \frac{b_{1}-a_{21} x_{1}^{(0)}-a_{23} x_{3}^{(0)}}{a_{22}}+(1-\omega) x_{2}^{(0)}=-0.528 \\
& x_{1}^{(1)}=\omega \frac{b_{1}-a_{31} x_{1}^{(0)}-a_{32} x_{2}^{(0)}}{a_{33}}+(1-\omega) x_{3}^{(0)}=0.49016
\end{aligned}
$$

Spring 2015, Problem 2c)

The relative error in every component is at most 10% after just a single iteration, and the error decreases in the later components, where we use more updated values.
The iterations will in fact converge regardless of the starting point because \mathbf{A} is SPD.

Spring 2023, Problem 1)

Question:

Verify that the matrices

$$
M=\left[\begin{array}{lll}
3 & 0 & 0 \\
1 & 6 & 0 \\
2 & 3 & 1
\end{array}\right] \quad, \quad N=\left[\begin{array}{lll}
2 & 6 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

give a LU decomposition of the matrix

$$
A=\left[\begin{array}{lll}
6 & 18 & 3 \\
2 & 12 & 1 \\
4 & 15 & 3
\end{array}\right]
$$

Use the LU decomposition to solve the linear system

$$
A x=(3,19,0)^{T}
$$

Spring 2023, Problem 1)

Answer:

Direct computation yields

$$
\left[\begin{array}{lll}
3 & 0 & 0 \\
1 & 6 & 0 \\
2 & 3 & 1
\end{array}\right]\left[\begin{array}{lll}
2 & 6 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
6 & 18 & 3 \\
2 & 12 & 1 \\
4 & 15 & 3
\end{array}\right]
$$

First, we set $y=N x$ and solve $M y=(3,19,0)^{T}$, which yields the temporary solution

$$
y=(1,3,-11)^{T}
$$

Then, we return to $y=N x$ and solve $N x=(1,3,-11)^{T}$, which yields the final solution

$$
x=(-3,3,-11)^{T}
$$

Spring 2010, Problem 1a)

Question:

Given the data set

x	1	$3 / 2$	2
y	-1	3	3

Find the lowest-degree polynomial $p(x)$ that interpolates the set.

Answer:

The Lagrange interpolation formula is

$$
p(x)=\sum_{i=0}^{2} y_{i} l_{i}(x)
$$

Spring 2010, Problem 1a)

We find the component functions directly:

$$
\begin{array}{ll}
l_{1}(x)=\frac{(x-3 / 2)(x-2)}{(1-3 / 2)(1-2)} & =(2 x-3)(x-2) \\
l_{2}(x)=\frac{(x-1)(x-2)}{(3 / 2-1)(3 / 2-2)} & =-4(x-1)(x-2) \\
l_{3}(x)=\frac{(x-1)(x-3 / 2)}{(2-1)(2-3 / 2)} & =(x-1)(2 x-3)
\end{array}
$$

The final polynomial becomes

$$
p(x)=-1 l_{0}(x)+3 l_{1}(x)+3 l_{2}(x)=-8 x^{2}+28 x-21
$$

Spring 2010, Problem 1b)

Question:

Determine the constants a, b and c such that $p(x)$ interpolates the function

$$
f(x)=a \cos (\pi x)+b \sin (\pi x)+c
$$

in the three points $(1,-1),(3 / 2,3)$ and $(2,3)$.

Answer:

The system of equations is

$$
\begin{aligned}
f(1) & =-a+c=-1 \\
f(3 / 2) & =-b+c=3 \\
f(2) & =a+c=3
\end{aligned}
$$

The solution is $a=2, b=-2$ and $c=1$.

Spring 2010, Problem 1c)

Question:

Find an upper limit for the error $|f(x)-p(x)|$ when $x \in[1,2]$.

Answer:

Since the interpolation point are uniformly distributed, we can invoke the general formula

$$
|f(x)-p(x)| \leq\left(\frac{h^{n+1}}{4(n+1)}\right) \max _{1 \leq x \leq 2}\left|f^{(n+1)}(x)\right|
$$

Spring 2010, Problem 1c)

We need the 3rd and 4th derivatives:

$$
\begin{aligned}
f(x) & =2[\cos (\pi x)-\sin (\pi x)]+1 \\
f^{(3)}(x) & =2 \pi^{3}[\sin (\pi x)+\cos (\pi x)] \\
f^{(4)}(x) & =2 \pi^{4}[\cos (\pi x)-\sin (\pi x)]
\end{aligned}
$$

Setting $f^{(4)}(x)=0$ yields

$$
\begin{aligned}
& \tan (\pi x)=1 \\
\Longrightarrow & \pi x=\frac{\pi}{4}+k \pi \\
\Longrightarrow & x=\frac{4 k+1}{4}
\end{aligned}
$$

Spring 2010, Problem 1c)

Since $x \in[1,2]$, we choose $x=5 / 4$ and test this point, in addition to the endpoints:

$$
\begin{aligned}
& f^{(3)}(1)=-2 \pi^{3} \\
& f^{(3)}(5 / 4)=-2 \sqrt{2} \pi^{3} \\
& f^{(3)}(2)=2 \pi^{3}
\end{aligned}
$$

We insert relevant values and get

$$
|f(x)-p(x)| \leq \frac{1}{12}\left(2 \sqrt{2} \pi^{3}\right)\left(\frac{1}{2}\right)^{3}=\frac{\pi^{3} \sqrt{2}}{48} \approx 0.9135
$$

Spring 2014, Problem 3a)

Denote by $f_{n}, n \in \mathbb{N}$, the polynomial of degree n that interpolates the function $f(x)=e^{x}+e^{-x}$ in equidistant interpolation points in the interval $[0,1]$.

Question:

Show that $f_{n}(x) \rightarrow f(x)$ for every $x \in \mathbb{R}$.

Spring 2014, Problem 3a)

Answer:

For every $x \in \mathbb{R}$ and $n \in \mathbb{N}$ there exists ξ (depending on both x and n) lying either in the interval $[0,1]$ or between x and the interval $[0,1]$ such that

$$
f(x)-f_{n}(x)=\frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{i=1}^{n}\left(x-\frac{i}{n}\right)
$$

The n-th order derivative has an analytical expression:

$$
\begin{aligned}
& f(\xi)=e^{\xi}+e^{-\xi} \\
\Longrightarrow & f^{(n)}(\xi)=e^{\xi}+(-1)^{n} e^{-\xi}
\end{aligned}
$$

Spring 2014, Problem 3a)

Since ξ lies either in $[0,1]$ or between x and this interval, we have the following bounds for e^{ξ} and $e^{-\xi}$:

$$
\begin{aligned}
e^{\xi} & \leq \max \left\{e^{x}, e^{1}\right\} \\
e^{-\xi} & \leq \max \left\{e^{-x}, e^{0}\right\}
\end{aligned}
$$

Thus, we have an upper bound for the derivative:

$$
\begin{aligned}
\left|f^{(n+1)}\right| & =\left|e^{\xi}+(-1)^{n} e^{-\xi}\right| \\
& \leq e^{\xi}+e^{-\xi} \\
& \leq \max \left\{e^{x}, e\right\}+\max \left\{e^{-x}, 1\right\} \\
& :=C
\end{aligned}
$$

Spring 2014, Problem 3a)

We have three different inequalities for the latter product term:

$$
\begin{array}{ll}
0 \leq x \leq 1 & \Longrightarrow\left|\prod_{i=1}^{n}\left(x-\frac{i}{n}\right)\right| \leq 1 \\
x>1 & \Longrightarrow\left|\prod_{i=1}^{n}\left(x-\frac{i}{n}\right)\right| \leq x^{n+1} \\
x<0 & \Longrightarrow\left|\prod_{i=1}^{n}\left(x-\frac{i}{n}\right)\right| \leq(-x+1)^{n+1}
\end{array}
$$

Spring 2014, Problem 3a)

Since $x^{n+1} \leq(x+1)^{n+1}$ and $1 \leq(|x|+1)^{n+1}$, we can sum up all the three inequalities into one single:

$$
\left|\prod_{i=1}^{n}\left(x-\frac{i}{n}\right)\right| \leq(|x|+1)^{n+1}
$$

The final inequality for everything becomes

$$
\left|f(x)-f_{n}(x)\right|=\frac{C}{(n+1)!}(|x|+1)^{n+1}
$$

We have the universal limit

$$
\lim _{n \rightarrow \infty} \frac{(|x|+1)^{n+1}}{(n+1)!}=0 \quad, \quad x \in \mathbb{R}
$$

Hence, we have shown that $f_{n}(x) \rightarrow f(x)$.

Spring 2014, Problem 3b)

Question:
Provide an estimate for

$$
\sup _{0 \leq x \leq 1}\left|f_{5}(x)-f(x)\right|
$$

Answer:

For equidistant interpolation points on the interval $[0,1]$ we have the universal estimate

$$
\sup _{0 \leq x \leq 1}\left|f(x)-f_{n}(x)\right| \leq \frac{h^{n+1}}{4(n+1)} \sup _{0 \leq x \leq 1}\left|f^{(n+1)}(x)\right|
$$

Spring 2014, Problem 3b)

Since $h=1 / n$ and $n=5$, we obtain

$$
\sup _{0 \leq x \leq 1}\left|f(x)-f_{5}(x)\right| \leq \frac{1}{5^{6} \cdot 4 \cdot 6} \sup _{0 \leq x \leq 1}\left|e^{x}+e^{-x}\right|
$$

Since $e^{x}+e^{-x}$ is convex, it attains its maximum on the interval's boundary. Thus

$$
\sup _{0 \leq x \leq 1}\left|e^{x}+e^{-x}\right|=e+e^{-1}
$$

Combining all values yields

$$
\sup _{0 \leq x \leq 1}\left|f(x)-f_{5}(x)\right| \leq \frac{e+e^{-1}}{375000} \approx 8.23 \cdot 10^{-6}
$$

Continuation 2013, Problem 3)

Question:

Find coefficients a and b such that the expression

$$
\int_{-1}^{1}\left[a x^{2}+b \sin (x)-e^{x}\right]^{2} d x
$$

is as small as possible.

Answer:

This is a least squares problem:

$$
\min _{a, b \in \mathbb{R}} \int_{-1}^{1} I(a, b ; x) d x
$$

The optimum is found by setting the gradient equal to zero:

$$
\nabla_{a, b}\left(\int_{-1}^{1} I(a, b ; x) d x\right)=\mathbf{0}
$$

Continuation 2013, Problem 3)

First, find the gradient of the integrand I with respect to a and b :

$$
\begin{aligned}
I & =\left[a x^{2}+b \sin (x)-e^{x}\right]^{2} \\
\frac{\partial I}{\partial a} & =2\left[a x^{2}+b \sin (x)-e^{x}\right] \cdot x^{2} \\
\frac{\partial I}{\partial b} & =2\left[a x^{2}+b \sin (x)-e^{x}\right] \cdot \sin (x)
\end{aligned}
$$

By setting the gradient of the integrand equal to 0 and writing the system on matrix form, we get

$$
\left[\begin{array}{cc}
\int_{-1}^{1} x^{4} d x & \int_{-1}^{1} x^{2} \sin (x) d x \\
\int_{-1}^{1} x^{2} \sin (x) d x & \int_{-1}^{1} \sin ^{2}(x) d x
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
\int_{-1}^{1} x^{2} e^{x} d x \\
\int_{-1}^{1} e^{x} \sin (x) d x
\end{array}\right]
$$

Continuation 2013, Problem 3)

The off-diagonal elements are zero due to odd integrands:

$$
\int_{-1}^{1} x^{2} \sin (x) d x=0
$$

The diagonal elements are

$$
\int_{-1}^{1} x^{4} d x=\frac{2}{5} \quad, \quad \int_{-1}^{1} \sin ^{2}(x) d x=1-\frac{\sin (2)}{2}
$$

The right-hand side elements are

$$
\begin{aligned}
& \int_{-1}^{1} x^{2} e^{x} d x=e-5 e^{-1} \\
& \int_{-1}^{1} e^{x} \sin (x) d x=\sin (1) \cosh (1)-\cos (1) \sinh (1)
\end{aligned}
$$

Continuation 2013, Problem 3)

Since the equation system has a diagonal matrix, we can solve it trivially and obtain the final values directly:

$$
a=\frac{\int_{-1}^{1} x^{2} e^{x} d x}{\int_{-1}^{1} x^{4} d x} \quad, \quad b=\frac{\int_{-1}^{1} e^{x} \sin (x) d x}{\int_{-1}^{1} \sin ^{2}(x) d x}
$$

Explicitly, we get the expressions

$$
\begin{aligned}
& a=\frac{5\left[e-5 e^{-1}\right]}{2} \\
& b=\frac{2[\sin (1) \cosh (1)-\cos (1) \sinh (1)]}{2-\sin (2)}
\end{aligned}
$$

Continuation 2013, Problem 5)

Question:

Estimate the value of the integral

$$
\int_{1}^{3} x \ln (x) d x
$$

using the composite Simpson's rule. Choose the number of subintervals n such that the absolute integration error is guaranteed to not exceed 10^{-4}.

Continuation 2013, Problem 5)

Answer:

The error term for composite Simpson with f on $[a, b]$ and n subintervals is given by

$$
e=-\frac{(b-a)^{5}}{180 n^{4}} f^{(4)}(\xi)
$$

For our function $f=x \ln (x)$, we have

$$
f^{(4)}(x)=\frac{2}{x^{3}} \quad, \quad \max _{1 \leq x \leq 3}\left|\frac{2}{x^{3}}\right|=2
$$

Continuation 2013, Problem 5)

By inserting relevant values and using the tolerance $\tau=10^{-4}$ instead of e, we get:

$$
\frac{(3-1)^{5}}{180 n^{4}} \cdot 2 \leq \tau \quad \Longrightarrow \quad n \geq \frac{2}{(45 \tau)^{1 / 4}}
$$

This yields $n \geq 7.72$, and since n must be even, we get $n \geq 8$.

Using the composite rule yields $S=2.9437737349$, which is very close to the exact value $4.5 \ln (3)-2 \approx 2.943755299$.

Spring 2012, Problem 3a)

Consider the nodes

$$
c_{1}=\frac{1}{6} \quad, \quad c_{2}=\frac{1}{2} \quad, \quad c_{3}=\frac{5}{6}
$$

and the corresponding quadrature formula

$$
Q(f)=w_{1} f\left(c_{1}\right)+w_{2} f\left(c_{2}\right)+w_{3} f\left(c_{3}\right)
$$

which approximates the integral $\int_{0}^{1} f(x) d x$.

Question:

Determine the weights w_{1}, w_{2}, w_{3} so that the formula is exact for polynomials of degree up to 2 , that is

$$
Q(P)=\int_{0}^{1} P(x) d x \quad, \quad P \in \mathbb{P}^{2}
$$

Spring 2012, Problem 3a)

Answer:

Since the interval is $[0,1]$ instead of $[-1,1]$, we must transfer the monomials $1, x, x^{2}, \ldots$ to the new domain, and they become

$$
1,(x-1 / 2),(x-1 / 2)^{2}
$$

The quadrature formula is

$$
Q(f)=w_{1} f(1 / 6)+w_{2} f(1 / 2)+w_{3} f(5 / 6)
$$

From this, we get three equations:

$$
\begin{aligned}
w_{1}+w_{2}+w_{3} & =1 \\
-\frac{1}{3} w_{1}+\frac{1}{3} w_{3} & =0 \\
\frac{1}{9} w_{1}+\frac{1}{9} w_{3} & =\frac{1}{12}
\end{aligned}
$$

Spring 2012, Problem 3a)

The solution of the equation system is

$$
w_{1}=\frac{3}{8} \quad, \quad w_{2}=\frac{1}{4} \quad, \quad w_{3}=\frac{3}{8}
$$

The final expression is

$$
Q(f)=\frac{3}{8} f\left(\frac{1}{6}\right)+\frac{1}{4} f\left(\frac{1}{2}\right)+\frac{3}{8} f\left(\frac{1}{6}\right)
$$

Spring 2012, Problem 3b)

Question:
Compute the error $E_{k}=\left|Q\left(x^{k}\right)-\int_{0}^{1} x^{k} d x\right|$ for the lowest integer k such that E_{k} is not zero.

Answer:
We test for $k=3$ first:

$$
\begin{aligned}
Q\left((x-1 / 2)^{3}\right)=\frac{3}{8} \frac{1}{6^{3}}+\frac{1}{4} \frac{1}{2^{4}}+\frac{3}{8} \frac{5^{3}}{6^{3}} & =\frac{1}{4} \\
\int_{0}^{1} x^{3} d x & \\
& =\frac{1}{4}
\end{aligned}
$$

Spring 2012, Problem 3b)

Since $E_{3}=0$, we can proceed with $k=4$:

$$
\begin{aligned}
Q\left((x-1 / 2)^{4}\right)=\frac{3}{8} \frac{1}{6^{4}}+\frac{1}{4} \frac{1}{2^{4}}+\frac{3}{8} \frac{5^{4}}{6^{4}} & =\frac{439}{2160} \\
\int_{0}^{1} x^{4} d x &
\end{aligned}
$$

We get $E_{4}=7 / 2160 \approx 3.24 \times 10^{-3}$, so $k=4$.

Continuation 2013, Problem 6a)

Consider the second order differential equation for $y(t)$

$$
y^{\prime \prime}+y^{\prime} \sin (y)=0
$$

with initial conditions

$$
y(0)=1 \quad, \quad y^{\prime}(0)=2
$$

Question:

We introduce the new variables $x_{1}=y$ and $x_{2}=y^{\prime}$. Rewrite the initial value problem into a system of first-order differential equations in the variables $X=\left[x_{1}, x_{2}\right]^{T}$.
Denote by $X_{i}=\left[x_{1 i}, x_{2 i}\right]^{T}$ the approximation from a numerical method to $X\left(t_{i}\right)$ with $t_{i}=t_{0}+i h$ for $i=0,1,2, \cdots$. Approximate $X(0.2)$ for this initial value problem, by taking two steps with Euler's method and step size $h=0.1$.

Continuation 2013, Problem 6a)

Answer:
The system is given by

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
-x_{2} \sin \left(x_{1}\right)
\end{array}\right]
$$

Hence, Euler's method becomes

$$
\left[\begin{array}{l}
x_{1, i+1} \\
x_{2, i+1}
\end{array}\right]=\left[\begin{array}{l}
x_{1 i} \\
x_{2 i}
\end{array}\right]+h\left[\begin{array}{c}
x_{2 i} \\
-x_{2 i} \sin \left(x_{1 i}\right)
\end{array}\right]
$$

Continuation 2013, Problem 6a)

If we compute directly with $h=0.1$, the first two steps become

$$
\begin{aligned}
X_{1} & =\left[\begin{array}{l}
1 \\
2
\end{array}\right]+0.1\left[\begin{array}{c}
2 \\
-2 \sin (1)
\end{array}\right] \\
& =\left[\begin{array}{c}
1.2 \\
1.831705803
\end{array}\right] \\
X_{2} & =\left[\begin{array}{c}
1.2 \\
1.8317058030
\end{array}\right]+0.1\left[\begin{array}{c}
1.8317058030 \\
-1.8317058030 \sin (1.2)
\end{array}\right] \\
& =\left[\begin{array}{l}
1.8317058030 \\
1.5509836627
\end{array}\right]
\end{aligned}
$$

Continuation 2013, Problem 6b)

Question:

Consider here a general autonomous system of first-order differential equations

$$
X^{\prime}=F(X)
$$

Euler's explicit and implicit methods read

$$
\begin{aligned}
& X_{n+1}=X_{n}+h F\left(X_{n}\right) \\
& X_{n+1}=X_{n}+h F\left(X_{n+1}\right)
\end{aligned}
$$

We generate a higher order method by combining these two methods in the following way:
(1) One step of size $h / 2$ with explicit Euler from X_{n} to $X_{n+1 / 2}$.
(2) One step of size $h / 2$ with implicit Euler from $X_{n+1 / 2}$ to X_{n+1}.

Show that we get a Runge-Kutta method. Write down its Butcher tableau. Determine the order.

Continuation 2013, Problem 6b)

Answer:

The two steps of our method are

$$
\begin{aligned}
X_{n+1 / 2} & =X_{n}+\frac{h}{2} F\left(X_{n}\right) \\
X_{n+1} & =X_{n+1 / 2}+\frac{h}{2} F\left(X_{n+1}\right)
\end{aligned}
$$

If we merge these steps, the resulting scheme becomes

$$
X_{n+1}=X_{n}+h \frac{F\left(X_{n}\right)+F\left(X_{n+1}\right)}{2}
$$

By setting $K_{1}=F\left(X_{n}\right)$ and, $K_{2}=F\left(X_{n+1}\right)$, we get

$$
X_{n+1}=X_{n}+\frac{h\left(K_{1}+K_{2}\right)}{2}
$$

Continuation 2013, Problem 6b)

The Butcher tableau for the trapezoidal method is

0	0	0
1	$1 / 2$	$1 / 2$
	$1 / 2$	$1 / 2$

The order conditions read

$$
\begin{aligned}
\sum_{i=1}^{2} b_{i} & =\frac{1}{2}+\frac{1}{2}=1 \\
\sum_{i=1}^{2} b_{i} c_{i} & =\frac{1}{2} \cdot 0+\frac{1}{2} \cdot 1=\frac{1}{2} \\
\sum_{i=1}^{2} b_{i} c_{i}^{2} & =\frac{1}{2} \cdot 0^{2}+\frac{1}{2} \cdot 1^{2}=\frac{1}{2} \neq \frac{1}{3}
\end{aligned}
$$

Our method is second order.

Consider the following boundary value problem for the unknown function $u(x)$:
$u_{x x}-2 u_{x}=f(x) \quad, \quad 0<x<1 \quad, \quad u(0)=2, u(1)=1$
where $f(x)=\sin (\pi x)$.

Question:

Construct a finite difference method using central differences to approximate both $u_{x x}$ and u_{x} with equidistant grid points on $[0,1]$. In other words, obtain the discretized linear system $A_{h} U=F$, and specify what A_{h}, U and F are.

Spring 2022, Problem 12a)

Answer:

If we use central difference approximation with $h=1 /(M+2)$ for $M+1$ intervals, then the 1st and 2nd order derivatives become

$$
\begin{aligned}
u_{x}\left(x_{j}\right) & \approx \frac{u\left(x_{j+1}\right)-u\left(x_{j-1}\right)}{2 h} \\
u_{x x}\left(x_{j}\right) & \approx \frac{u\left(x_{j+1}\right)-2 u\left(x_{j}\right)+u\left(x_{j-1}\right)}{h^{2}}
\end{aligned}
$$

Since $u_{x x}-2 u_{x}=f(x), A_{h}$ becomes a tridiagonal matrix, given by

$$
A_{h}=\frac{1}{h^{2}} \operatorname{tridiag}(1+h,-2,1-h)
$$

Spring 2022, Problem 12a)

By invoking boundary conditions, we obtain

$$
U=\left[\begin{array}{c}
U_{1} \\
\vdots \\
U_{M}
\end{array}\right] \quad, \quad F=\left[\begin{array}{c}
f_{1}-\frac{2}{h^{2}}-\frac{2}{h} \\
f_{2} \\
\vdots \\
f_{M-1} \\
f_{M}-\frac{1}{h^{2}}+\frac{1}{h}
\end{array}\right]
$$

where U_{j} approximates $u\left(x_{j}\right)$ and $f_{j}=f\left(x_{j}\right)$.

Spring 2022, Problem 12b)

Question:

Compute the quantity $\lim _{h \rightarrow 0^{+}} \rho\left(A_{h}^{-1}\right)$, where ρ is the spectral radius. You can use the following fact without proof:
For a tridiagonal matrix $\operatorname{tridiag}(c, a, b)$ with $b c>0$, the eigenvalues are given by

$$
\lambda_{s}=a+2 \sqrt{b c} \cos \left(\frac{s \pi}{M+1}\right) \quad, \quad s=1, \ldots, M
$$

Answer:

In our case $A_{h}=h^{-2} \operatorname{tridiag}(1+h,-2,1-h)$, and that yields

$$
\lambda_{s}=\frac{-2+2 \sqrt{1-h^{2}} \cos (\pi s h)}{h^{2}} \quad, \quad s=1, \ldots, M
$$

Spring 2022, Problem 12b)

The spectral radius of A_{h}^{-1} is found as follows:

$$
\begin{aligned}
& \rho\left(A_{h}\right)=\max \left|\lambda_{s}\right| \\
& \rho\left(A_{h}^{-1}\right)=\frac{1}{\min \left|\lambda_{s}\right|}=\frac{1}{\left|\lambda_{1}\right|}
\end{aligned}
$$

The following expansions around $h=0$ are valid:

$$
\begin{aligned}
& \sqrt{1-h^{2}}=1-\frac{h^{2}}{2}+\mathcal{O}\left(h^{4}\right) \\
& \cos (\pi h)=1-\frac{(\pi h)^{2}}{2}+\mathcal{O}\left(h^{4}\right)
\end{aligned}
$$

Spring 2022, Problem 12b)

We approximate λ_{1} as follows:

$$
\begin{aligned}
\left|\lambda_{1}\right| & =2 \frac{1-\left(1-\frac{h^{2}}{2}+\mathcal{O}\left(h^{4}\right)\right)\left(1-\frac{(\pi h)^{2}}{2}+\mathcal{O}\left(h^{4}\right)\right)}{h^{2}} \\
& =\pi^{2}+1+\mathcal{O}\left(h^{2}\right)
\end{aligned}
$$

Thus, we have shown that

$$
\lim _{h \rightarrow 0^{+}} \rho\left(A_{h}^{-1}\right)=\frac{1}{\pi^{2}+1}
$$

