
MA2501 – Floating point systems

Brynjulf Owren

1 Floating point numbers

On a computer, the real numbers, R, are approximated by a finite set of num-
bers, F ⊂ R. A way to represent a real number is to use a signed floating point
format in the decimal number system

x = ± (0.d1d2 · · ·) · 10e ∈ R (1)

where each di is a decimal digit 0 ≤ di ≤ 9, and where we can assume that
d1 > 0, and e ∈ Z, the exponent. The representation is not unique, for instance

0.19999 · · · is the same as 0.20000 · · · ,

but that is not of any importance here. We could also replace the base 10 by any
positive integer b > 1, and then the digits would be in the range 0 ≤ di ≤ b− 1.
With this generalisation, we can write (1) in the form

x = ±
∞∑
k=1

dk · be−k (2)

For the floating point numbers on a computer, we can only allow a finite number
t of digits, d1, . . . , dt. For any real number, we can introduce a map fl : R→ F,
by truncating or rounding the infinite number of digits in x, we would get

fl(x) = ± (0.d1d2 · · · dt) · be = ±
t∑

k=1

dk · be−k (3)

In addition to this, we also need to introduce a restriction on the set of expo-
nents, typically L ≤ e ≤ U for some integers L and U . Generally we can also
write (3) (and even the real numbers) as

x = m · be

where m is called the mantissa. Summarising, the characterising parameters of
a floating point system are

b The base of the number system, 10 in daily life, 2 or 16 on a computer.
t The precision, the number of digits in the mantissa.
L The smallest possible value of the exponent, e.
U The largest possible value of the exponent, e.

1

2 Representation error

Before we start, we introduce some notation. We let the error be the difference
between the exact value and the approximated value, and we put a bar over
the symbol to signify the approximation value. Thus

∆x = x− x̄

is the absolute error ∆x. We can also define the relative error as

δx =
x− x̄
x̄

Perhaps a better definition could have been to divide by x rather than by x̄,
but the chosen definition is often easier to work with, and we are usually in the
regime where |δx| � |x|.

Suppose now that x ∈ R is represented as mx · be with 1/b ≤ mx < 1. The
floating point approximation to x is x̄ = fl(x) and the relative error is δx. We
now assume that x̄ = m̄x ·be where m̄x is the full mantissa mx chopped off after
t digits. By comparing (2) with (3), ignoring the sign of x, we find

δx =

∞∑
k=t+1

dkb
−k

t∑
k=1

dkb−k
≤

∞∑
k=t+1

(b− 1)b−k

b−1
=

(b− 1)b−(t+1) 1
1−b−1

b−1
= b1−t

It is interesting to observe that the bound for the representation error is in-
dependent of the size of the number x. One should keep in mind that this
representation error analysis is only valid for values of x between the smallest
and largest representable number.

2.1 Machine precision

An important quantity associated to a floating point system is the machine
precision, also called machine epsilon. It is defined to be the smallest positive
number η such that fl(1 + η) > 1. One can make a simple piece of Python code
to compute it

1 error , const = float (1), float (2)

2 while const > 1.0:

3 error = 0.5* error

4 const = error + 1.

5

6 print (2* error)

where a typical output from the print could be: 2.220446049250313e-16. But
there is also a Python function that can be used to get hold of this number

1 import numpy as np

2 eta = np.finfo(float).eps

3 print(eta)

2

2.2 IEEE standard

Standards have been developed to have reasonable and consistent parameters of
the floating point system, and IEEE is responsible for the most used standard.
A floating point number in double precision occupies 64 bits. According to the
standard, it allows for a precision t = 53 binary digits (bits) where one of them
is implicitly given due to normalisation and so only 52 of the 64 digits are used
for the mantissa. That leaves one sign digit, and 11 digits for the exponent, note
that 211 = 2048. The exponent is required to be in the range −1021 ≤ e ≤ 1024
so 2046 patterns are used for the exponent. The remaining two patterns are
used to signify NaN (not-a-number) and Inf (infinity). In python, one can
import the module sys to get access to all the important parameters of the
system.

1 import sys

2 sys.float_info

and the last statement causes the following printout

sys.float_info(max=1.7976931348623157e+308, max_exp=1024,

max_10_exp=308, min=2.2250738585072014e-308, min_exp=-1021,

min_10_exp=-307, dig=15, mant_dig=53, epsilon=2.220446049250313e-16,

radix=2, rounds=1)

There are similar standards for e.g. single precision (32 bits) floats.

2.3 Chopped and rounded arithmetic

Any y ∈ R can be written such that

|y| = myb
e + ryb

e−t

where my is a t-digit mantissa and 0 ≤ ry ≤ 1. We assume that we have some
information about ry, this will be the case if there are one or more guard digits
in the computational unit.

1. Chopped arithmetic, i.e. we ignore ry and replace |y| by |ȳ| = myb
e. We

get the relative error

|δy| =
∣∣∣∣rybe−tmybe

∣∣∣∣ ≤ 1 · be−t
1
b · be

≤ b1−t

2. Rounded arithmetic. Modify the mantissa as follows

|m′y| =

 |my| if ry <
1
2

|my|+ b−t if ry ≥ 1
2

The resulting bound for the error is then

|δy| ≤
1

2
· b1−t

3

3 The general law of error propagation

Two error sources contribute when we make a computation

1. There are errors in the input data to the computation, they may be en-
hanced or damped

2. The result of the computation must be converted to a floating point num-
ber in F.

The first of these two error sources is usually approximated by linearisation.
Suppose that we have n inputs x1, . . . , xn, all potentially infected by an error,
such that xk = x̄k + ∆k. Ideally, we want to compute y = φ(x1, . . . , xn) for
some function φ : Rn → R, but in practice we can only obtain ȳ = φ(x̄1, . . . , x̄n)
and we set ∆y = y − ȳ. Assuming that φ is twice differentiable we find from
Taylor expansion that

ȳ + ∆y = φ(x̄1 + ∆1, . . . , x̄n + ∆n) = ȳ +
n∑
i=1

∂φ

∂xi
(x̄1, . . . , x̄n)∆i +O(∆2)

We ignore the O(∆2) terms and with a slight abuse of notation, we just set

∆y =
n∑
i=1

∂φ̄

∂xi
∆i

which is the general error propagation law. It is often more useful to consider
relative errors, and by introducing

xk = x̄k(1 + δk), k = 1, . . . , n, y = ȳ(1 + δy)

we get

|δy| ≤
n∑
k=1

∣∣∣∣ x̄kφ̄
∣∣∣∣ ∣∣∣∣ ∂φ̄∂xk

∣∣∣∣ |δk|.
We can think of the quantities ∣∣∣∣ x̄kφ̄

∣∣∣∣ ∣∣∣∣ ∂φ̄∂xk
∣∣∣∣

as a growth factor for the input error source δk.

Example 3.1. Addition. We let φ(x1, x2) = x1+x2, such that ∂φ
∂xi

= 1, i = 1, 2.
Then

|δy| = |δx1+x2 | ≤
|x̄1|

|x̄1 + x̄2|
|δ1|+

|x̄2|
|x̄1 + x̄2|

|δ2|

Note in particular that the situation x̄1 ≈ −x̄2 is problematic as the denominator
becomes small and there can be an uncontrolled growth of error.

Example 3.2. Multiplication. Now φ(x1, x2) = x1 ·x2, such that ∂φ
∂x1

= x2 and
∂φ
∂x2

= x1. We find

|δy| = |δx1·x2 | ≤
|x̄1|
|x̄1 · x̄2|

| · |x̄2| · |δ1|+
|x̄2|
|x̄1 · x̄2|

· |x̄1| · |δ2| = |δ1|+ |δ2|

4

To summarise:

We use here a linear model for error propagation, which is an approxima-
tion to the true error. Evaluating a function φ on inaccurate input data
x̄1, . . . , x̄n, where xi = x̄i(1 + δi) results in, after rounding the output to
the nearest floating point number, in a relative error δy where

δy =
n∑
i=1

x̄i
φ(x̄1, . . . , x̄n)

∂φ

∂xi
(x̄1, . . . , x̄n) δi + r, |r| ≤ η. (4)

where η the machine epsilon of the system.

5

