Numerical Methods: brief introduction to floating point numbers

Elena Celledoni

January 7, 2020

1 Representation of numbers on a computer: Floating point model

Computers have finite memory hence not every number can be represented exactly on a computer. For example $\sqrt{2}, \pi$ have infinite number of digits hence it is impossible to represent them exactly in a computer. To fit in a computer, real numbers are approximated via the floating point model:

- binary system is used: $r= \pm\left(\alpha_{k} 2^{k}+\alpha_{k-1} 2^{k-1}+\alpha_{k-2} 2^{k-2}+\cdots+\alpha_{0} 2^{0}\right)$ where $\alpha_{0}, \ldots, \alpha_{k} \in\{0,1\}, \alpha_{k} \neq 0$.
- a fixed amount of memory is allocated to represent each number:

$$
\begin{aligned}
& r= \pm 0 . \alpha_{k} \alpha_{k-1} \ldots \alpha_{k-m-1} \alpha_{k-m} \ldots \alpha_{0} \quad \cdot 2^{k+1} \\
& f l(r)= \pm 0 \cdot \alpha_{k} \alpha_{k-1} \ldots \alpha_{k-m-1} \tilde{\alpha}_{k-m} \cdot 2^{E}
\end{aligned}
$$

2 Floating point numbers

A bit is a basic unit of information in information theory, the name bit comes from binary digit.

$$
\text { Double precision IEEE } 745
$$

1 bit	52 bits	11 bits
sign	significant digits	exponent

Kahan, Turing award in 1989, was the primary architect behind the IEEE 754-1985

Some concepts and definitions:

- Rounding: is a procedure for determining the floatingpoint counterpart $f l(r)$ of a real number r. An alternative approach is called chopping.
- Roundoff error is $r-f l(r)$.
- Machine epsilon: ϵ is the smallest floating point number such that

$$
1+\epsilon \neq 1
$$

in the computer.

- Loss of significant digits: loss of precision due to subtraction of floating point numbers very close to each other.

2.1 Rounding

Rounding is the most used method to approximate real numbers in a computer. Assume $b=10$. Given

$$
0 . d_{1} d_{2} \ldots d_{p} d_{p+1} \ldots d_{p+k} \cdot b^{e}
$$

rounding to p-digits gives
$0 . d_{1} d_{2} \ldots d_{p} d_{p+1} \ldots d_{p+k} \cdot b^{e}=\left\{\begin{array}{llll}0 . d_{1} d_{2} \ldots d_{p} \cdot b^{e} & \text { if } & 0 . d_{p+1} \ldots d_{p+k}<\frac{1}{2} & \\ 0 . d_{1} d_{2} \ldots \tilde{d}_{p} \cdot b^{e} & \text { if } & 0 . d_{p+1} \ldots d_{p+k}=\frac{1}{2} & \tilde{d}_{p} \text { nearest even digit } \\ & & & \text { to } d_{p} \cdot d_{p+1} \ldots d_{p+k} \\ 0 . d_{1} d_{2} \ldots \hat{d}_{p} \cdot b^{e} & \text { if } & 0 . d_{p+1} \ldots d_{p+k}>\frac{1}{2} & \hat{d}_{p}=d_{p}+1\end{array}\right.$

3 Loss of significant digits

Given the two real numbers

$$
\begin{gathered}
x=0.3721478693 \\
y=0.37202300572
\end{gathered}
$$

their difference is

$$
x-y=0.0001248121
$$

We perform rounding at 5 digits, this gives

$$
\begin{aligned}
& f l(x)=0.37215 \\
& f l(y)=0.37202
\end{aligned}
$$

now the difference of the two floating point numbers is

$$
f l(x)-f l(y)=0.00013
$$

in memory we can store 5 digits for $f l(x)-f l(y)$ but we really know only two of them, the others are lost.

4 Avoid propagation of roundoff error

Stability: study how the error propagates due to perturbations in the initial data.

- stability of the problem
- stability of the algorithm

Example 4.1 Problem: find x such that $a x+b=c$ where a, b, c are given numbers and $a \neq 0$.

Algorithm 1:

1. divide by $a: x+\frac{b}{a}=\frac{c}{a}$;
2. subtract $\frac{b}{a}: x=\frac{c}{a}-\frac{b}{a}$

Algorithm 2 :

1. subtract b : $a x=c-b$;
2. divide by a $x=\frac{c-b}{a}$

Stability of the problem answers the question: What happens to the solution of $a x+b=c$ if $a \rightarrow a\left(1+\delta_{a}\right), b \rightarrow b\left(1+\delta_{b}\right), c \rightarrow c\left(1+\delta_{c}\right) ?$

Stability of the algorithm answers the question: What happens to the output of the algorithm if $a \rightarrow a\left(1+\delta_{a}\right), b \rightarrow b\left(1+\delta_{b}\right), c \rightarrow c\left(1+\delta_{c}\right)$?

5 Stability and condition numbers

A problem is stable when the relative error in the output solution is of the same size of the relative error in the input data. Given a stable problem only if we choose a stable algorithm to solve it we get errors in the output which are of the same size as the errors in the input.

Definition 5.1 Condition numbers are constants used to bound the amplification of the relative error in the output by means of the relative error in the input.

Condition numbers are useful for quantifing the stability of a problem as well as the stability of an algorithm.

Example 5.2 (Stability of the arithmetic operation " + ") Let $x>0$ and $y>0$ real. Let $f l(x)=x\left(1+\delta_{x}\right), f l(y)=y\left(1+\delta_{y}\right)$ with $\left|\delta_{x}\right| \leq \epsilon$ and $\left|\delta_{y}\right| \leq \epsilon$. Look at the relative error:

$$
\begin{gathered}
\left|\frac{x+y-(f l(x)+f l(y))}{x+y}\right|=\left|\frac{x+y-\left(x+x \delta_{x}+y+y \delta_{y}\right)}{x+y}\right| \\
=\left|-\frac{x}{x+y} \delta_{x}-\frac{y}{x+y} \delta_{y}\right| \leq C \cdot \bar{\delta}
\end{gathered}
$$

where $C=\max \left\{\frac{x}{x+y}, \frac{y}{x+y}\right\}$ and $\bar{\delta}=2 \cdot \max \left\{\left|\delta_{x}\right|,\left|\delta_{y}\right|\right\} \leq 2 \epsilon$. Addition of positive numbers is a stable operation. C here is the condition number.

