Norwegian University of PI’Oj ect MA2501
Science and Technology

Department of Mathematical

Sciences

MA2501
Deadline April 12, 2019

You can work in groups of maximum 3 persons.

Adaptive quadrature and Romberg quadrature

In this exercise you will have to implement Romberg integration and test
your code computing the integral of different functions.

We denote the exact integral with Zy, 4 (f),

b
Ly (f) 12/ f(z)de.

a) Implement the algorithm for Adaptive Simpson quadrature to com-
pute the integral Z, (f) at a desired accuracy. Assume f is four
times differentiable. Denote with S(a,b) the Simpson quadrature on
the interval [a, b]:

b—a
6

a+b
2

S(at) = 5 [1@+ 41 (“57) + £0)] = Tua ()

Input
e The function that we want to integrate.
e The interval of integration, [a, b].

e A tolerance (TOL) to be used in a stopping criterion when the
error is sufficiently small.

Core of the recursive algorithm
AdQuad(f,[a,], TOL)

e Iy =S5(a,b)

® C.— GTM
o I:=S(a,c)+ S(c,b).
e Error estimate € := 1 |I — Io).
If e <TOL then

~ - 1
=1+ —(I—-1
else 3 . .
1= Ta.q + e

where IN[W:] =AdQuad(f,]a, c],TTOL) and IN[c’b] =AdQuad(f,]c, b],TTOL).

March 28, 2019 Page 1 of 5

e Return 1.

b)

Test your code to make sure that it computes the correct values of
the integrals and to the correct accuracy, i.e. with an error below
the tolerance. You should test your program on the following test
problems:

e f(x)=cos(2mx), x € [0, 1];

o f(x) =e3sin(2x), z € [0,7/4].
Compare the results you obtain against the exact value of the inte-
grals, Zjq5(f). Make a plot of the error [I — Zj, 4 (f)| for decreasing

values of the tolerance, verify that the error is bounded by the toler-
ance.

Implement a function in Python performing Romberg integration.

Let ho =b—a and h,, = 3—2, the elements of the first column of the
Romberg matrix are:

2(n—1)

R(n,0) = %R(n—l,o)—khn S fla+@i—Dhy), n=1,...,m—1,
- 0
with)

R(0,0) = 5ho(f(a) + /(b)) (2)
Use the formula for computing the columns of the Romberg matrix:
R(n,k) = R(n,k—1)+ E(n,k), k=1,...,n. (3)

where
E(n, k) = ﬁ[R(n,k—l)—R(n—l,k—l)]. (@)

Input

e The function that we want to integrate.
e The interval of integration, [a, b].

e Maximum allowed dimension (number of rows and columns) for
the Romberg matrix: m.

A tolerance (TOL) to be used in a stopping criterion when the
error is sufficiently small.
Core of the algorithm
Start computing R(0,0) by the trapezoidal rule on [a, b].
Forn=1,... . m—1

e Compute R(n,0) using (1).

e Compute the correction in formula (4). This is also an estimate
of the error.

e Update the columns of the n-th row of the Romberg matrix using
(3) fork=1,...,n.

March 28, 2019 Page 2 of 5

e Check convergence. Use (4) as an estimate for the error. If
|E(n,n)] < TOL give R(n,n) as output approximation to the
integral, else continue.

d) You should test your program on the following test problems:

e f(z) = cos(27mx), z € [0,1], with exact integral Zjo 1;(f) = 0;

o f(z)= 23,3 € [0, 1], with exact integral Zjq 1j(f) = 3.
Compare the results you obtain against the exact value of the inte-
grals, Zj, 4 (f) and against the values computed by Adaptive Simp-
son’s quadrature.

You should provide numerical evidence of the convergence of Romberg
algorithm as n — oo. Consider £(n,0) = [T,y (f) — R(n,0)],
E(n,n) = |Zjap(f) — R(n,n)|, where R(n,k) for n = 0,..., k =
0,...,n are the entries of the Romberg matrix.

Explain the behaviour using the Euler-Mclaurin formula.

March 28, 2019 Page 3 of 5

Rigid body simulation

Consider the free rigid body Euler equations
m=mx (T 'm), m(0) =my,

where T is the diagonal inertia tensor, T' = diag([y, 2, I3). We assume
that the principal moments of inertia (the diagonal entries of the inertia
tensor) are distinct and in increasing order, i.e. Iy < Iy < I3.

The 2-norm of the angular momentum ~ and the energy function £

1 _
y=m()m(t), E= Lm®)" (T 'm(),
are constant along the solution m(t). This means that the solutions m(t)
are the curves obtained by the intersection of the sphere v = m(¢)" m(t)
with the ellipsoid £ = 1m(t)T (T"'m(¢)), see [1, p. 100] for an illustra-
tion.

a) Implement the mid-point Runge-Kutta implicit integration method
to solve numerically the free rigid body Euler equations.

You are free to choose your favourite approach to solve the nonlinear
system of equations to be solved at each time-step. You could for
example find an explicit expression for the Jacobian of the nonlinear
system and implement a Newton method, or you could use fixed-point
iteration.

b) Implement the improved Euler method:

m = m, + ﬁ(mn X (T_lmn)),

n+% 2

mp,,, = mn+h(mn+%x(T_1mn+%)).

This is an explicit method and you do not have to solve any equations.

c) Use now one of the NumPy routines for the numerical solution of or-
dinary differential equations to solve the free rigid body Euler equa-
tions. The goal is to obtain a very accurate reference solution that
can be used to test that your implementation of the midpoint and of
the improved Euler method is correct.

Provide numerical evidence that the midpoint method and the im-
proved Euler method have order 2: compare the solution given by
these numerical methods for different values of h and the reference
solution obtained using the NumPy ODE routine. Choose [0,1] as
time interval. Provide a loglog plot of the error versus the step-size
h showing that you get a line of slope 2.

d) Integrate on relatively large time intervals. Compute and plot the
error in v and F as a function of time for the midpoint method, the
improved Euler method, and for the NumPy ODE routine. What do

March 28, 2019 Page 4 of 5

you observe? How is this error affected by the tolerances used in the
NumPy method and in the solution of the nonlinear equations for
the midpoint?

e) Plot the solutions obtained by the various rigid body integrators as
curves on the sphere v = m(t)"m(t). Make one or several plots
similar to the ones you can find in [1, p. 100, 127,164,169|.

References

[1] E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration,
Springer.

March 28, 2019 Page 5 of 5

