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Solutions to exercise set 9

1 The procedure has been implemented in the Matlab function adsimpson.m available
on the course home page. The exact value of both integrals is π ≈ 3.14159....

a) The procedure gives the approximation 3.14159 to the digits given. The actual
absolute error is about 6.1× 10−8, well below ε.

b) The procedure gives the approximation 3.14159 to the digits given. The actual
absolute error is about 1.8× 10−8, again well below ε.

2 The second Gauss–Legendre rule with h = 1 yields
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≈ 0.4440.

3 a) This result does not depend on the choice of x0, x1, x2 as long as they are
distinct. For any 3 distinct points the interpolation polynomial must equal f ,
when f is a polynomial of degree at most 2. This follows from the uniqueness
theorem of interpolating polynomials. Since the rule is generated by integrating
the polynomial precisely, it also integrates f precisely in this case.

b) Using the fact that 1, x− 1
2 and (x− 1

2)
2 should be integrated exactly, gives the

three equations:
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The second equation gives A0 = A2, from the third we then get A0 = A2 = 2/3
and finally from the first A1 = −1/3.
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c) From the definition we can immediately write down the Lagrange polynomials.

`0 =

(
x− 1

2

) (
x− 3

4

)
1
8

= 8x2 − 10x+ 3

`1 =

(
x− 1

4

) (
x− 3

4

)
− 1

16

= −16x2 + 16x− 3

`0 =

(
x− 1

4

) (
x− 1

2

)
1
8

= 8x2 − 6x+ 1

which are trivially integrated to give

A0 =

∫ 1

0
`0dx =

∫ 1

0
8x2 − 10x+ 3dx = 2/3

A1 =

∫ 1

0
`1dx =
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0
−16x2 + 16x− 3dx = −1/3

A2 =

∫ 1

0
`1dx =

∫ 1

0
8x2 − 6x+ 1dx = 2/3

so the resulting weights are the same. This must be the case. As discussed in
a), since the functions 1, x − 1

2 and (x − 1
2)

2 are all polynomials of degree less
than or equal to 2 they match their interpolating polynomial through x0, x1,
x2. Consequently they will be integrated exactly when the weights are chosen
as in c). However this was precisely the requirement we directly imposed in b),
and since the resulting linear system had a unique solution, those weights must
match those found in c).

Note also that 1, x − 1
2 and (x − 1

2)
2 clearly form a basis for all polynomi-

als of degree less than or equal to 2, i.e. any such polynomial can be written as
a linear combination of these three functions. The linearity of integration and
the quadrature rule then implies that the requirement in b) is equivalent to the
requirement that all polynomials of degree less than or equal to 2 be integrated
exactly.

d) We use the hint and check
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Since 1, x− 1
2 , (x−

1
2)

2 and (x− 1
2)

3 clearly form a basis for all polynomials of
degree less than or equal to 3. It again follows from linearity of integration and
the quadrature rule that the formula is exact for all such polynomials. Because
(x − 1

2)
4 is a polynomial of degree 4, the formula is clearly not exact for all

polynomials of degree 4.

e) We use the hint and check
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In fact it is readily observed that the formula will be exact for all (x − 1
2)

2n+1

with n some nonnegative integer, since it will be exact for all f(x− 1/2), where
f(x) is an odd function. This does not mean the formula is exact for general
polynomials of degree 5. Suppose it were exact for one such polynomial p(x).
Then p(x) + k(x − 1

2)
4 for some constant k 6= 0 would also be a polynomial of

degree 5. However, since the formula is not exact for (x − 1
2)

4 it follows from
linearity that the quadrature rule will not be exact for this new polynomial.

f) A linear transformation gives∫ b

a
f(x)dx ≈ I(f) = (b− a)

2∑
k=0

Akf (a+ (b− a)xk)

with Ak and xk as before.

4 Call the interval this quadrature formula applies to for [a, b], where we exclude the
trivial case a = b and assume without loss of generality that b > a. Now, following
the hint it is readily observed that

M2(x) = (x− x0)2(x− x1)2 · · · (x− xn)2,

is 0 at all the nodes x0, x1, . . . , xn. This implies that for a quadrature formula

I(f) =

n∑
k=0

Akf(xk),

I(M2) = 0. However M2 is obviously positive at all points except the nodes and
continuous, and so the actual integral of M2 must be positive, i.e.∫ b

a
M2(x) dx > 0.

Thus M2 will not be integrated exactly by the quadrature formula. The proof now
follows from the realization that M2 is a polynomial of degree 2n+ 2.

5 Denote by S the interpolating linear spline with grid size h = π/n. Then we have
the estimate

max
x∈[0,π]

|S(x)− f(x)| ≤ h2

8
max
x∈[0,π]

|f ′′(x)|.

Now,
f ′′(x) = −104 sin(100x),

and therefore
max
x∈[0,π]

|f ′′(x)| = 104.

Thus

max
x∈[0,π]

|S(x)− f(x)| ≤ 104

8
h2.
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As a consequence, the error is guaranteed to be smaller than 10−8, if

h2 < 8× 10−12,

which, since h = π/n, is equivalent to the estimate

n >
106π√

8
.
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