MA2501 Numerical Methods Spring 2017

Norwegian University of Science and Technology

Department of Mathematics

Solutions to exercise set 3

1 Write a MATLAB program for the solution of a linear system Ax = b in the case where A is tridiagonal. More precisely, the program should take the three non-zero diagonals of A and the vector b as input and use Gaussian elimination without pivoting for the solution of the system.

Test your program on the matrix $\mathbf{A} \in \mathbb{R}^{200 \times 200}$ with main diagonal $\mathbf{d} = [4, 4, \dots, 4]$ and lower and upper diagonals $\mathbf{a} = \mathbf{c} = [-1, -1, \dots, -1]$, and the right hand sides $\mathbf{b}_1 = [1, \dots, 1]^T$ and $\mathbf{b}_2 = [1, 2, 3, \dots, 200]^T$.

Possible solution:

Example code can be found on the webpage of the course.

2 Cf. Cheney and Kincaid, Exercise 8.1.19

- a) Prove that the product of two lower triangular matrices is lower triangular.
- b) Prove that the product of two unit lower triangular matrices is unit lower triangular.
- c) Prove that the inverse of an invertible lower triangular matrix is lower triangular.
- d) Prove that the inverse of a unit lower triangular matrix is unit lower triangular.
- e) Prove the previous statements for upper triangular matrices.

Possible solution:

a) Let L, $\mathbf{M} \in \mathbb{R}^{n \times n}$ be two lower triangular matrices. Assume that $1 \leq i < j \leq n$. Since L and M are lower triangular we have $\ell_{ik} = 0$ for k > i and $\ell_{kj} = 0$ for k < j. Thus

$$(\mathbf{LM})_{ij} = \sum_{k=1}^{n} \ell_{ik} m_{kj} = \sum_{k=1}^{i} \ell_{ik} \cdot 0 + \sum_{k=i+1}^{j-1} 0 \cdot 0 + \sum_{k=j}^{n} 0 \cdot m_{kj} = 0.$$

Thus $(\mathbf{LM})_{ij} = 0$ whenever j > i, proving that \mathbf{LM} is lower diagonal.

b) Let $\mathbf{L}, \mathbf{M} \in \mathbb{R}^{n \times n}$ be unit lower triangular. From the previous part we already know that \mathbf{LM} is lower triangular. Now let $1 \le i \le n$. Then

$$(\mathbf{LM})_{ii} = \sum_{k=1}^{n} \ell_{ik} m_{ki} = \sum_{k=1}^{i-1} \ell_{ik} \cdot 0 + \ell_{ii} m_{ii} + \sum_{k=i+1}^{n} 0 \cdot m_{ki} = \ell_{ii} m_{ii} = 1 \cdot 1 = 1.$$

Thus the diagonal entries of \mathbf{LM} are all equal to 1, and therefore \mathbf{LM} is unit lower triangular.

c) Let $\mathbf{L} \in \mathbb{R}^{n \times n}$ be an invertible lower triangular matrix with inverse $\mathbf{M} := L^{-1}$. Assume that \mathbf{M} is not lower triangular. Then there exist indices $1 \le i < j \le n$ such that $m_{ij} \ne 0$. Moreover, we can choose these indices in such a way that $m_{kj} = 0$ for all k < i. Since \mathbf{LM} is the identity matrix, we have $(\mathbf{LM})_{ij} = 0$. Hence

$$0 = (\mathbf{LM})_{ij} = \sum_{k=1}^{n} \ell_{ik} m_{kj} = \sum_{k=1}^{i-1} \ell_{ik} \cdot 0 + \ell_{ii} m_{ij} + \sum_{k=i+1}^{n} 0 \cdot m_{kj} = \ell_{ii} m_{ij}.$$

Since **L** is an invertible lower triangular matrix its diagonal elements are different from 0. Thus the equation $0 = \ell_{ii}m_{ij}$ already implies that $m_{ij} = 0$, which is a contradiction to the definition of m_{ij} . Hence **M** is lower triangular.

d) Let \mathbf{L} be unit lower triangular. Since det $\mathbf{L} = 1$, it follows that \mathbf{L} is invertible. Denote its inverse by $\mathbf{M} := \mathbf{L}^{-1}$. We have already shown that the matrix \mathbf{M} is lower triangular. Hence we only have to prove that $\mathbf{M}_{ii} = 1$ for every *i*. Because $\mathbf{L}\mathbf{M}$ is the identity matrix, we have, similar as in the second part of this exercise, the equation

$$1 = (\mathbf{LM})_{ii} = \sum_{k=1}^{n} \ell_{ik} m_{ik} = \ell_{ii} m_{ii}.$$

Since $\ell_{ii} = 1$, this proves that also $m_{ii} = 1$.

- e) Assume that \mathbf{U} and \mathbf{V} are upper triangular. Then \mathbf{U}^T and \mathbf{V}^T are lower triangular. Moreover $(\mathbf{U}\mathbf{V})^T = \mathbf{V}^T\mathbf{U}^T$. Thus, using the first part of this exercise we obtain that $(\mathbf{U}\mathbf{V})^T$ is lower triangular and therefore $\mathbf{U}\mathbf{V}$ is upper triangular. The proof for unit upper triangular matrices is similar. Finally, the fact that the inverse of a (unit) upper triangular matrix is (upper) triangular follows from the fact that $(\mathbf{U}^T)^{-1} = (\mathbf{U}^{-1})^T$; the former is lower triangular and therefore the latter as well.
- **a)** Assume that $\mathbf{A} \in \mathbb{R}^{n \times n}$ is invertible and has an *LU* factorization. Prove that the *LU* factorization is unique.
 - b) Find matrices $\mathbf{A} \in \mathbb{R}^{n \times n}$ that either do not have an LU factorization, or whose LU factorization is not unique.

Possible solution:

a) Assume that $\mathbf{A} = \mathbf{L}_1 \mathbf{U}_1$ and $\mathbf{A} = \mathbf{L}_2 \mathbf{U}_2$ are two *LU* factorizations of the matrix \mathbf{A} . Then

$$\mathbf{L}_1\mathbf{U}_1=\mathbf{L}_2\mathbf{U}_2.$$

Since the matrix **A** is invertible, so are the matrices \mathbf{L}_j and \mathbf{U}_j . Thus we can multiply the equation above with \mathbf{L}_2^{-1} from the left and with \mathbf{U}_1^{-1} from the right. Thus we obtain the equation

$$\mathbf{L}_2^{-1}\mathbf{L}_1 = \mathbf{U}_2\mathbf{U}_1^{-1}.$$

Since \mathbf{L}_2 and \mathbf{L}_1 are unit lower triangular, so is $\mathbf{L}_2^{-1}\mathbf{L}_1$. Since \mathbf{U}_2 and \mathbf{U}_1 are upper triangular, so is $\mathbf{U}_2\mathbf{U}_1^{-1}$. Thus $\mathbf{L}_2^{-1}\mathbf{L}_1$ is a unit lower triangular matrix that is at the same time upper triangular. The only possibility is therefore that $\mathbf{L}_2^{-1}\mathbf{L}_1$ is the identity matrix. This shows that we have $\mathbf{L}_2 = \mathbf{L}_1$ and, similarly, $\mathbf{U}_2 = \mathbf{U}_1$. Thus the *LU* factorization of **A** is unique.

b) Consider the matrix

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Assume that $\mathbf{A} = \mathbf{L}\mathbf{U}$ is an LU factorization of \mathbf{A} . Since $\ell_{11} = 1$ and $\ell_{12} = 0$, it follows that $u_{11} = a_{11} = 0$. This implies, however, that the matrix \mathbf{U} is not invertible. As a consequence, also the product $\mathbf{L}\mathbf{U}$ is not invertible. This contradicts, however, the fact that det $\mathbf{A} = -1$, which would imply that $\mathbf{A} = \mathbf{L}\mathbf{U}$ is an invertible matrix. Thus, \mathbf{A} cannot have an LU factorization.

Consider now the case where $n \geq 2$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$ is the 0-matrix. Let \mathbf{L} be any unit lower triangular matrix and let $\mathbf{U} = \mathbf{0} \in \mathbb{R}^{n \times n}$. Then $\mathbf{L}\mathbf{U} = \mathbf{0} = \mathbf{A}$, implying that we have constructed an LU factorization of \mathbf{A} . Since there is more than one unit lower triangular matrix in $\mathbb{R}^{n \times n}$ with $n \geq 2$, this proves the non-uniqueness of the factorization.

4 Factor the following matrices into the LU decomposition using the LU Factorization Algorithm where $l_{ii} = 1$ for all i.

a)	$\left[\begin{array}{rrrr} 2 & -1 & 1 \\ 3 & 3 & 9 \\ 3 & 3 & 5 \end{array}\right]$
b)	$\left[\begin{array}{rrrrr} 1.012 & -2.132 & 3.104 \\ -2.132 & 4.906 & -7.013 \\ 3.104 & -7.013 & 0.014 \end{array}\right]$
c)	$\left[\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
d)	$\begin{bmatrix} 2.1756 & 4.0231 & -2.1732 & 5.1967 \\ -4.0231 & 6.0000 & 0 & 1.1973 \\ -1.000 & -5.2107 & 1.1111 & 0 \\ 6.0235 & 7.0000 & 0 & -4.1562 \end{bmatrix}$

Possible solution:

a)

$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 \\ 1.5 & 1 & 0 \\ 1.5 & 1 & 1 \end{bmatrix}, \quad \mathbf{U} = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 4.5 & 7.5 \\ 0 & 0 & 4 \end{bmatrix}.$$

$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 \\ -2.106719 & 1 & 0 \\ 3.067194 & -1.142997 & 1 \end{bmatrix}, \quad \mathbf{U} = \begin{bmatrix} 1.012 & -2.132 & 3.104 \\ 0 & 0.4144743 & -0.4737431 \\ 0 & 0 & -10.04806 \end{bmatrix}.$$

$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.5 & 1 & 0 & 0 \\ 0 & -2 & 1 & 0 \\ 1 & -1.33333 & 2 & 1 \end{bmatrix}, \quad \mathbf{U} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1.5 & 0 & 0 \\ 0 & 0 & 0.5 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1.849191 & 1 & 0 & 0 \\ -0.4596433 & -0.2501219 & 1 & 0 \\ 2.768662 & -0.3079436 & -5.352283 & 1 \end{bmatrix},$$

$$\mathbf{U} = \begin{bmatrix} 2.1756 & 4.0231 & -2.1732 & 5.1967 \\ 0 & 13.43948 & -4.018662 & 10.80699 \\ 0 & 0 & -0.8929524 & 5.091694 \\ 0 & 0 & 0 & 12.03613 \end{bmatrix}.$$