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Solutions to exercise set 0

This set of exercises was meant to give a short introduction into the usage of Matlab.

1 Linear algebra and plotting:

Find and plot the polynomial of degree 3 that interpolates the points given in the
following table:

i 1 2 3 4
xi -2 0 1 3
yi -16 -3 -1 24

In other words: Find a polynomial

p(x) = a3x
3 + a2x

2 + a1x+ a0

that satisfies p(xi) = yi for i = 1, 2, 3, 4.

a) Verify that the coefficients satisfy the linear system
1 −2 4 −8
1 0 0 0
1 1 1 1
1 3 9 27



a0
a1
a2
a3

 =


−16
−3
−1
24

 .

b) Use Matlab to solve the linear system.

c) Use Matlab for plotting the interpolation polynomial.

Possible solution:

The solution of the linear system is (a0, a1, a2, a3) = (−3, 3/2,−1/2, 1) and thus

p(x) = x3 − 1

2
x2 +

3

2
x− 3.

It can be obtained in Matlab with:

A = [1,-2,4,-8;1,0,0,0;1,1,1,1;1,3,9,27]; define the matrix
b = [-16;-3;-1;24]; define the vector
a = A\b solve the equation, store it as the

variable a, and show it

Note that it is important to keep track of the correct dimensions: The variable b above is
a 4× 1 vector. Also note that the semicolon (;) at the end of a line surpresses the visual
output of the result of a calculation.
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The function p can (in the possibly interesting interval [−3, 4]) be plotted with:

x = [-3:0.01:4]; discretise the interval [−3, 4]
p = -3 + 1.5*t - 0.5*t.^2 + t.^3; evaluate the function at the

discretisation points
plot(t,p) a simple plot

This yields the following:

Now it is possible to play around with the result a bit. For instance:

plot(t,p,’Color’,’red’,’LineWidth’,’2’); change color and line width
xlabel(’x’); add a label to the x-axis
ylabel(’p(x)’); add a label to the y-axis
title(’Interpolation polynomial’); add a title
grid on; add a grid

yields
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2 Some simple programming:

Euler’s number e can, for instance, be computed using either of the formulas

e = lim
n→∞

(
1 +

1

n

)n
or

e =
∞∑
k=0

1

k!
.

a) Write two Matlab-programs that compute the numbers

an =
(
1 +

1

n

)n
and

bm =
m∑
k=0

1

k!

for different values of n and m and compare the results with the true value of
e.

b) One of the two methods does not seem to converge to e. Which one? Why?

Possible solution:

a) A program for the first method can for instance be:

function a = myeuler1(n)
a = (1+1/n)^n;

A possibility for the (slightly more complicated) second method is:

function b = myeuler2(m)
c = 1;
b = 1;
for k = 1:m

c = c/k;
b = b + c;

end

A different possibility that takes advantage of the capabilities of Matlab of working
with vectors and the inbuilt function factorial is:
function b = myeuler3(m)
b = sum(1./factorial(0:m));

b) Testing the second program, we see1 that the result does not change for m ≥ 17 and
in fact coincides with the result of the computation exp(1).

In contrast, the first program requires a fairly large number n to yield a reasonable
result. For n = 100, the error is about 10−2, for n = 104, it is about 10−4, finally, for

1Usually Matlab only shows 5 significant digits. Using the command format long, one can increase
this to 15 digits for double precision.
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n = 108 it is of the order of 10−8. Increasing n further, however, tends to decrease
the accuracy: If we choose n = 1012, then the error increases to about 10−4.

This behaviour can be explained by understanding that the total error of the program
can be decomposed into two parts: first, the approximation error, which comes from
the fact that the formula is only exact for “n = ∞”, and, second, computational
(i.e., rounding) errors, which come mainly from the fact that the division 1/n is, in
general, inexact. Now note that the division 1/n can be performed exactly, if n is
some power of 2. Indeed, choosing n = 240 (which is about the same as 1012) yields
an error of about 10−12. Choosing n = 252, we basically obtain an exact result.
If, however, we choose n = 253, then 1 + 1/n is indistinguishable from 1 in double
precision. Thus the result of the algorithm for the input n = 253 is simply 1.
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