This set of exercises was meant to give a short introduction into the usage of Matlab.

1 Linear algebra and plotting:

Find and plot the polynomial of degree 3 that interpolates the points given in the following table:

i	1	2	3	4
x_{i}	-2	0	1	3
y_{i}	-16	-3	-1	24

In other words: Find a polynomial

$$
p(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}
$$

that satisfies $p\left(x_{i}\right)=y_{i}$ for $i=1,2,3,4$.
a) Verify that the coefficients satisfy the linear system

$$
\left(\begin{array}{cccc}
1 & -2 & 4 & -8 \\
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
1 & 3 & 9 & 27
\end{array}\right)\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)=\left(\begin{array}{c}
-16 \\
-3 \\
-1 \\
24
\end{array}\right) .
$$

b) Use Matlab to solve the linear system.
c) Use Matlab for plotting the interpolation polynomial.

Possible solution:

The solution of the linear system is $\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=(-3,3 / 2,-1 / 2,1)$ and thus

$$
p(x)=x^{3}-\frac{1}{2} x^{2}+\frac{3}{2} x-3 .
$$

It can be obtained in Matlab with:

$$
\begin{array}{ll}
A=[1,-2,4,-8 ; 1,0,0,0 ; 1,1,1,1 ; 1,3,9,27] ; & \\
\text { define the matrix } \\
b=[-16 ;-3 ;-1 ; 24] ; & \text { define the vector } \\
a=A \backslash b & \\
& \text { solve the equation, store it as the } \\
& \text { variable } a, \text { and show it }
\end{array}
$$

Note that it is important to keep track of the correct dimensions: The variable b above is a 4×1 vector. Also note that the semicolon (;) at the end of a line surpresses the visual output of the result of a calculation.

The function p can (in the possibly interesting interval $[-3,4]$) be plotted with:

```
x = [-3:0.01:4]; discretise the interval [-3,4]
p = -3 + 1.5*t - 0.5*t.^2 + t. ^3;
plot(t,p)
evaluate the function at the
    discretisation points
    a simple plot
```

This yields the following:

Now it is possible to play around with the result a bit. For instance:

```
plot(t,p,'Color','red','LineWidth','2'); change color and line width
xlabel('x');
ylabel('p(x)');
title('Interpolation polynomial');
grid on;
```

change color and line width add a label to the x-axis add a label to the y-axis add a title add a grid
yields

2 Some simple programming:

Euler's number e can, for instance, be computed using either of the formulas

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

or

$$
e=\sum_{k=0}^{\infty} \frac{1}{k!}
$$

a) Write two Matlab-programs that compute the numbers

$$
a_{n}=\left(1+\frac{1}{n}\right)^{n}
$$

and

$$
b_{m}=\sum_{k=0}^{m} \frac{1}{k!}
$$

for different values of n and m and compare the results with the true value of e.
b) One of the two methods does not seem to converge to e. Which one? Why?

Possible solution:

a) A program for the first method can for instance be:

```
function a = myeuler1(n)
a = (1+1/n)^n;
```

A possibility for the (slightly more complicated) second method is:
function $b=$ myeuler2(m)
c = 1;
b = 1;
for $k=1: m$
$\mathrm{c}=\mathrm{c} / \mathrm{k} ;$
$\mathrm{b}=\mathrm{b}+\mathrm{c}$;
end
A different possibility that takes advantage of the capabilities of MATLAB of working with vectors and the inbuilt function factorial is:

```
function b = myeuler3(m)
b = sum(1./factorial(0:m));
```

b) Testing the second program, we se 1 that the result does not change for $m \geq 17$ and in fact coincides with the result of the computation $\exp (1)$.
In contrast, the first program requires a fairly large number n to yield a reasonable result. For $n=100$, the error is about 10^{-2}, for $n=10^{4}$, it is about 10^{-4}, finally, for

[^0]$n=10^{8}$ it is of the order of 10^{-8}. Increasing n further, however, tends to decrease the accuracy: If we choose $n=10^{12}$, then the error increases to about 10^{-4}.
This behaviour can be explained by understanding that the total error of the program can be decomposed into two parts: first, the approximation error, which comes from the fact that the formula is only exact for " $n=\infty$ ", and, second, computational (i.e., rounding) errors, which come mainly from the fact that the division $1 / n$ is, in general, inexact. Now note that the division $1 / n$ can be performed exactly, if n is some power of 2 . Indeed, choosing $n=2^{40}$ (which is about the same as 10^{12}) yields an error of about 10^{-12}. Choosing $n=2^{52}$, we basically obtain an exact result. If, however, we choose $n=2^{53}$, then $1+1 / n$ is indistinguishable from 1 in double precision. Thus the result of the algorithm for the input $n=2^{53}$ is simply 1 .

[^0]: ${ }^{1}$ Usually Matlab only shows 5 significant digits. Using the command format long, one can increase this to 15 digits for double precision.

