1 Compute a numerical approximation of the definite integral

$$
\int_{0}^{2} e^{-x^{2}} \sin (x) d x
$$

using the composite Gauss-Legendre rule with $n=2$ and two subintervals, i.e. $h=1$. (You may want to use Matlab for the computations.)

Possible solution:

The second Gauss-Legendre rule with $h=1$ yields

$$
\begin{aligned}
Q(f, 0,2,1)=\frac{5}{18} f\left(\frac{1}{2}-\frac{\sqrt{3}}{2 \sqrt{5}}\right)+\frac{8}{18} f & \left(\frac{1}{2}\right)+\frac{5}{18} f\left(\frac{1}{2}+\frac{\sqrt{3}}{2 \sqrt{5}}\right) \\
& +\frac{5}{18} f\left(\frac{3}{2}-\frac{\sqrt{3}}{2 \sqrt{5}}\right)+\frac{8}{18} f\left(\frac{3}{2}\right)+\frac{5}{18} f\left(\frac{3}{2}+\frac{\sqrt{3}}{2 \sqrt{5}}\right)
\end{aligned}
$$

2 Show that the quadrature formula constructed using the $n+1$ nodes $x_{0}, x_{1}, \ldots, x_{n}$ can not possibly have degree of precision $2 n+2$, i.e. integrate exactly all polynomials of degree up to and including $2 n+2$. This implies that the degree of precision, $2 n+1$, obtained by Gaussian quadrature is optimal.
Hint: Consider the polynomial M^{2}, with

$$
M(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)
$$

Possible solution:

Call the interval this quadrature formula applies to for $[a, b]$, where we exclude the trivial case $a=b$ and assume without loss of generality that $b>a$. Now, following the hint it is readily observed that

$$
M^{2}(x)=\left(x-x_{0}\right)^{2}\left(x-x_{1}\right)^{2} \cdots\left(x-x_{n}\right)^{2},
$$

is 0 at all the nodes $x_{0}, x_{1}, \ldots, x_{n}$. This implies that for a quadrature formula

$$
I(f)=\sum_{k=0}^{n} A_{k} f\left(x_{k}\right),
$$

$I\left(M^{2}\right)=0$. However M^{2} is obviously positive at all points except the nodes and continuous, and so the actual integral of M^{2} must be positive, i.e.

$$
\int_{a}^{b} M^{2}(x) d x>0 .
$$

Thus M^{2} will not be integrated exactly by the quadrature formula. The proof now follows from the realization that M^{2} is a polynomial of degree $2 n+2$.

3 Cf. Cheney and Kincaid, Exercise 6.1.9

Assume that you are interpolating the function $f(x)=\sin (100 x)$ on the interval $[0, \pi]$ with a linear spline on a uniformly spaced grid. Estimate how many grid points will be required in order to guarantee that the interpolation error is smaller than 10^{-8} ?

Possible solution:

Denote by S the interpolating linear spline with grid size $h=\pi / n$. Then we have the estimate

$$
\max _{x \in[0, \pi]}|S(x)-f(x)| \leq \frac{h^{2}}{8} \max _{x \in[0, \pi]}\left|f^{\prime \prime}(x)\right| .
$$

Now,

$$
f^{\prime \prime}(x)=-10^{4} \sin (100 x)
$$

and therefore

$$
\max _{x \in[0, \pi]}\left|f^{\prime \prime}(x)\right|=10^{4}
$$

Thus

$$
\max _{x \in[0, \pi]}|S(x)-f(x)| \leq \frac{10^{4}}{8} h^{2} .
$$

As a consequence, the error is guaranteed to be smaller than 10^{-8}, if

$$
h^{2}<8 \times 10^{-12},
$$

which, since $h=\pi / n$, is equivalent to the estimate

$$
n>\frac{10^{6} \pi}{\sqrt{8}} .
$$

4 Assume that S is a spline of degree k on $[a, b]$ with $k \geq 2$. Show that S^{\prime} is a spline of degree $k-1$ on $[a, b]$.

Possible solution:

Since S is a spline of degree k, it is $k-1$-times continuously differentiable, and therefore S^{\prime} is $k-2$-times continuously differentiable (continuous in case $k=2$). Furthermore, there exists a partition $a=x_{0}<x_{1}<\ldots<x_{n}=b$ such that the restriction of S to each interval $\left(x_{j-1}, x_{j}\right), j=1, \ldots, n$, is a polynomial of degree k. Hence the restriction of S^{\prime} to $\left(x_{j-1}, x_{j}\right), j=1, \ldots, n$, is a polynomial of degree $k-1$, and therefore S^{\prime} is a spline of degree $k-1$.

5 Find the linear function $f(x)=a x+b$ that best approximates the following points:

$$
\begin{array}{l||cccccc}
x & 0 & 1 & 3 & 3 & 2 & 7 \\
\hline y & -1 & 1 & 4 & 3 & 3 & 6
\end{array}
$$

Possible solution:

The optimal linear $f(x)=a x+b$ solves the normal equations

$$
\begin{aligned}
a \sum_{k} x_{k}^{2}+b \sum_{k} x_{k} & =\sum_{k} x_{k} y_{k} \\
a \sum_{k} x_{k}+n b & =\sum_{k} y_{k}
\end{aligned}
$$

where n is the number of data points $\left(x_{k}, y_{k}\right)$. In this case we obtain the equations

$$
\begin{aligned}
72 a+16 b & =70 \\
16 a+6 b & =16
\end{aligned}
$$

with the solution

$$
a=\frac{41}{44} \quad \text { and } \quad b=\frac{2}{11}
$$

that is,

$$
f(x)=\frac{41}{44} x+\frac{2}{11}
$$

