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Solutions to exercise set 8

1 Compute numerical approximations of the definite integral∫ 1

0
sin(x2) dx

using the composite trapezoid rule with h = 1, h = 1/2, and h = 1/4. In addition,
provide estimates for the approximation error.

Possible solution:

The trapezoid rule yields the following approximations of the integral:

T (f, 0, 1) =
(1
2
sin(0) +

1

2
sin(1)

)
≈ 0.4207,

T (f, 0, 1, 1/2) =
1

2

(1
2
sin(0) + sin(1/4) +

1

2
sin(1)

)
≈ 0.3341,

T (f, 0, 1, 1/4) =
1

4

(1
2
sin(0) + sin(1/16) + sin(1/4) + sin(9/16) +

1

2
sin(1)

)
≈ 0.3160.

For the approximation error we use the estimate

|T (f, a, b, h)−
∫ 1

0
f(x) dx| ≤ b− a

12
h2 sup

x∈[a,b]
|f ′′(x)|.

In our case,
f ′′(x) = 2 cos(x2)− 4x2 sin(x2),

and thus (since cos and sin are both bounded by 1)

sup
x∈[0,1]

|f ′′(x)| ≤ 6.

Hence we obtain

|T (f, a, b, h)−
∫ 1

0
f(x) dx| ≤ h2

2
.

For h = 1, h = 1/2, and h = 1/4 the respective error bounds are therefore 1/2, 1/8, and
1/32.1

1 In this case better estimates can be obtained quite easily: The function f ′′ is decreasing on the interval
[0, 1] because both cos(x2) and −x2 sin(x2) are. Thus we can estimate

sup
x∈[0,1]

|f ′′(x)| ≤ max{|f ′′(0)|, |f ′′(1)|} ≈ 2.285.
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2 Compute numerical approximations of the definite integral∫ 2

0
e−x

2
sin(x) dx

a) using the composite trapezoid rule with h = 1 and h = 1/2,

b) using the composite Simpson rule with h = 1 and h = 1/2,

(You may want to use Matlab for the computations.)

Possible solution:

a) For the trapezoid rule we obtain

T (f, 0, 2, 1) =
(1
2
f(0) + f(1) +

1

2
f(2)

)
≈ 0.3179.

and

T (f, 0, 2, 1/2) =
(1
2
f(0) + f(1/2) + f(1) + f(3/2) +

1

2
f(2)

)
≈ 0.3982.

b) The Simpson rule yields

S(f, 0, 2, 1) =
1

6

(
f(0) + 4f(1/2) + 2f(1) + 4f(3/2) + f(2)

)
≈ 0.4250

and

S(f, 0, 2, 1/2) =
1

12

(
f(0) + 4f(1/4) + 2f(1/2) + 4f(3/4) + 2f(1)

+ 4f(5/4) + 2f(3/2) + 4f(7/4) + f(2)
)
≈ 0.4213.

3 Compute numerical approximations of the definite integrals∫ 1

0
x7/2 dx and

∫ 1

0
x5/2 dx

using the trapezoid method and the Simpson method with h = 1, h = 1/2, h = 1/4.

a) Compute for all approximations the respective approximation errors and try to
estimate numerically the convergence rate.

b) Which convergence rate would you usually expect for the trapezoid method and
the Simpson method, and which have you actually observed? Try to explain
possible discrepancies.

(You may want to use Matlab for the computations.)

From this we would obtain the estimate

|T (f, a, b, h)−
∫ 1

0

f(x) dx| ≤ 2.285

12
h2

and hence the error estimates 0.1904, 0.0476, and 0.0119.
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Possible solution:

The results of the numerical approximations with the trapezoid and the Simpson method
are listed in the folowing table (all rounded to 7 significant digits):

f(x) = x7/2 :

h Trapezoid Simpson
1 0.5 0.2255922
0.5 0.2941942 0.2224537
0.25 0.2403888 0.2222377

f(x) = x5/2 :

h Trapezoid Simpson
1 0.5 0.2845178
0.5 0.3383883 0.2855925
0.25 0.2987915 0.2857024

a) The exact values of the integrals are:∫ 1

0
x7/2 dx =

2

9
≈ 0.2222222,∫ 1

0
x5/2 dx =

2

7
≈ 0.2857143.

Thus we obtain the following approximate errors errh:

f(x) = x7/2 :

Trapezoid Simpson
err1 0.2777778 0.0033701
err0.5 0.0719720 0.0002315
err0.25 0.0181666 0.0000154

f(x) = x5/2 :

Trapezoid Simpson
err1 0.2142857 0.0011965
err0.5 0.0526741 0.0001217
err0.25 0.0130772 0.0000118

In order to estimate the convergence rates, we compute next the ratios of consecutive
approximations. For these we get

f(x) = x7/2 :

Trapezoid Simpson
err1
err0.5

3.860 14.558
err0.5
err0.25

3.962 15.003

f(x) = x5/2 :

Trapezoid Simpson
err1
err0.5

4.068 9.828
err0.5
err0.25

4.028 10.312

In case a method has approximation order O(hp) for some p > 0, we would expect
that

errh
errh/2

≈ Chp

C(h/2)p
= 2p.

Consequently, the number
p̂h := log2

( errh
errh/2

)
should give us an estimate of the convergence order. We obtain

f(x) = x7/2 :

Trapezoid Simpson
p̂1 1.949 3.864
p̂0.5 1.986 3.907

f(x) = x5/2 :

Trapezoid Simpson
p̂1 2.024 3.297
p̂0.5 2.010 3.366

March 22, 2015 Page 3 of 7



Solutions to exercise set 8

These results indicate that, most probably, the trapezoid rule has for both functions
a convergence order of O(h2). The convergence rates for the Simpson rule are not
that easy to estimate. In case of the function f(x) = x7/2 one can reasonably assume
that the convergence order is O(h4), although it would be also possible that it is
slightly smaller; for the function f(x) = x5/2, this convergence rate seems unlikely,
and one would rather estimate a rate of O(h3.3) or O(h3.4).

b) Usually, one would expect for the trapezoid method a convergence rate of O(h2), and
the computations confirm this expectation. The convergence rate for the Simpson
method is usually O(h4), but the numerical computations indicate that the rate
is maybe not reached for the function f(x) = x7/2 and almost surely not reached
for the function f(x) = x5/2. The problem is that the convergence rates result
for the Simpson rule requires the function f to be four times differentiable. Both
functions in this example, however, are not, and the second function is in fact only
twice differentiable. (This is also the reasons why the trapezoid rule works just as
expected.)

4 Derive the formula for the closed Newton–Cotes rule with n = 4 (with nodes xj =
a+ j(b− a)/4, 0 ≤ j ≤ 4).

Possible solution:

The weights for this Newton–Cotes rule have to satisfy the equations

2 =

∫ 1

−1
1 dx = 2

(
c0 + c1 + c2 + c3 + c4),

0 =

∫ 1

−1
x dx = 2

(
−c0 −

1

2
c1 +

1

2
c3 + c4

)
,

2

3
=

∫ 1

−1
x2 dx = 2

(
c0 +

1

4
c1 +

1

4
c3 + c4

)
,

0 =

∫ 1

−1
x3 dx = 2

(
−c0 −

1

8
c1 +

1

8
c3 + c4

)
,

2

5
=

∫ 1

−1
x4 dx = 2

(
c0 +

1

16
c1 +

1

16
c3 + c4

)
.

From the second and the fourth equation (or the symmetry of the nodes) we obtain that
c0 = c4 and c1 = c3. Thus the third and the fifth equation simplify to

1

3
= 2c0 +

1

2
c1,

1

5
= 2c0 +

1

8
c1.

From this we immediately obtain that

c1 = c3 =
16

45
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and thus
c0 = c4 =

1

6
− 1

4
c1 =

7

90
.

Finally,

c2 = 1− c0 − c1 − c3 − c4 =
2

15
.

Thus the closed Newton–Cotes rule with n = 4

Q(f, a, b) = (b− a)
( 7

90
f(y0) +

16

45
f(y1) +

2

15
f(y2) +

16

45
f(y3) +

7

90
f(y4)

)
.

5 Construct for every 0 < α < 1 a quadrature rule of the form

Q(f,−1, 1) = 2
(
c0f(−α) + c1f(0) + c2f(α)

)
that has degree of precision 2, i.e. integrates all polynomials up to degree 2 exactly.

It might be possible that polynomials of higher order than 2 are integrated exactly.
What is the actual degree of precision of the different formulas?

Possible solution:

The rule has to satisfy the equations

2 =

∫ 1

−1
1 dx = 2(c0 + c1 + c2),

0 =

∫ 1

−1
x dx = 2(−αc0 + αc2),

2

3
=

∫ 1

−1
x2 dx = 2(α2c0 + α2c2).

The second equation implies that c0 = c2; the third equation implies

c0 = c2 =
1

6α2
.

The first equation now implies that

c1 = 1− 1

3α2
=

3α2 − 1

3α2
.

For finding the actual degree of precision, we check whether also polynomials of higher
degree are integrated exactly. We note first that

Q(x3,−1, 1) = 2
(
− 1

6α2
α3 + 0 +

1

6α2
α3
)
= 0

∫ 1

−1
x3 dx,

which shows that the (composite) rules have degree of precision at least 3. Next we note
that ∫ 1

−1
x4 dx =

2

5
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and
Q(x4,−1, 1) = 2

( 1

6α2
α4 +

1

6α2
α4
)
=

2

3
α2.

Thus the function x4 is integrated exactly, if and only if α2 = 3/5 or

α =

√
3

5
.

Thus the degree of precision for α2 6= 3/5 is 3. For the case α2 = 3/5

Q(x5,−1, 1) = 2
(
− 1

6α2
α5 +

1

6α2
α5
)
= 0 =

∫ 1

−1
x5 dx,

but
Q(x6,−1, 1) = 2

( 1

6α2
α6 +

1

6α2
α6
)
=

2

3
α4 =

2

3

9

25
=

6

25

and ∫ 1

−1
x6 dx =

2

7
.

This shows that the degree of precision for α2 = 3/5 is 5.

To summarize, we have a degree of precision 3 for α2 6= 3/5, and 5 for α2 = 3/5.

6 Implement and use Romberg integration to approximate the integrals in Exercise 2.
Compute the Romberg table until either |Rn−1,n−1 − Rn,n| < 10−6. Compare your
result to the exact value of the integral.

Possible solution:

A function that computes the Romberg Array in Matlab is implemented in the function
romint.

For the integral
∫ 2
0 e
−x2

sin(x) dx the algorithm converges for n = 6 to the approximation
R(6, 6) = 0.4211642. This matches the true solution to the digits given. The actual error
is 1.67× 10−12, well below 10−6.

7 Romberg integration is used to approximate
∫ 3
2 f(x)dx. If f(2) = 0.51342,

f(3) = 0.36788, R(2, 0) = 0.43687, and R(2, 2) = 0.43662, find f(2.5).

Possible solution:

We have b− a = 1 and can thus compute R(0, 0) since

R(0, 0) =
1

2
(f(2) + f(3)) = 0.44065.
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In addition
R(1, 0) =

1

2
(R(0, 0) + f(2.5)).

From the Richardson extrapolation formula and the above relation

R(1, 1) =
4

3
R(1, 0)− 1

3
R(0, 0) =

1

3
R(0, 0) +

2

3
f(2.5)

R(2, 1) =
4

3
R(2, 0)− 1

3
R(1, 0) =

4

3
R(2, 0)− 1

6
R(0, 0)− 1

6
f(2.5)

R(2, 2) =
16

15
R(2, 1)− 1

15
R(1, 1)

=
16

15

(
4

3
R(2, 0)− 1

6
R(0, 0)− 1

6
f(2.5)

)
− 1

15

(
1

3
R(0, 0) +

2

3
f(2.5)

)
=

64

45
R(2, 0)− 1

5
R(0, 0)− 2

9
f(2.5)

Isolating f(2.5) in the last equation yields

f(2.5) =
64R(2, 0)− 9R(0, 0)− 45R(2, 2)

10
≈ 0.43459
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