
Norwegian University of Science
and Technology
Department of Mathematics

MA2501 Numerical

Methods

Spring 2015

Solutions to exercise set 1

1 Consider the following two segments of pseudocode:

Program A:

Data: a vector a = [a0, a1, . . . , an] of real numbers, a real number x;
Output: a real number y;
Initialization: y ← a0;
for k = 1 to n do

y ← y + akx
k;

end

Program B:

Data: a vector a = [a0, a1, . . . , an] of real numbers, a real number x;
Output: a real number y;
Initialization: y ← an;
for k = n− 1 to 0 by −1 do

y ← ak + xy;
end

a) What do these programs actually do?

b) In theory, both programs should yield the same result. Can they be expected
to do so also numerically?

c) Which of the programs is usually preferable?

Possible solution:

The loop in the �rst program (obviously) gives the result

y = a0 + a1x+ a2x
2 + · · ·+ anx

n.

In the second program we obtain

y = a0 + x
(
a1 + x

(
a2 + x

(
a3 + · · ·+ x

(
an−1 + xan

)
· · ·
)))

,

which can, again, be simpli�ed to

y = a0 + a1x+ a2x
2 + · · ·+ anx

n.

January 18, 2015 Page 1 of 7

Solutions to exercise set 1

Thus both programs provide the same result, if all operations are performed without round-
ing errors. Because rounding errors usually cannot be avoided, the numerical results can
be expected to be di�erent, though.

In order to answer the question, which of the programs is preferable, we �rst have to clarify
what �preferable� actually means�and there are several possible interpretations:

1. Can one of the two programs be expected to yield more accurate results?

2. Is one of the two programs most probably faster?

3. Are there noticeable di�erences in memory usage?

Next we look at these points separately:

1. From the viewpoint of accuracy of the result, at �rst glance none of the two methods
is obviously better. Rounding errors in the form of cancellation may occur in both
programs in their main steps (either the calculation of y + aky

k or ak + xy).

2. The situation is di�erent, however, if one counts the number of operations:

Program B requires in each iteration one multiplication and one addition, totalling
in n multiplications and n additions.

For Program A, the total number of additions is again n, but the number of mul-
tiplications is larger. At �rst glance, the computation of xk seems to require k − 1
multiplications. This would amount to 0 + 1 + 2 + . . . + n − 1 = n(n − 1)/2 mul-
tiplications. Exploiting the fact that, for instance, x4 = (x2)2, this number can be
decreased quite a bit. Even more, it would be possible (and very sensible) to keep
the value xk in the memory and to compute xk+1 in the next step by multiplying the
stored value with x. The main code line would then be replaced by something like

z ← xz,

y ← y + akz.

Still, this requires two multiplications in each step, leading to a total of 2n (or 2n−1
if one discounts the unnecessary �rst one).

3. Apparently, memory usage is no real issue in both programs.

Roughly spoken, these considerations imply that the second program is almost twice as
fast as the (optimal implementation of the) �rst program without sacri�cing any accuracy.
Thus it should in general be preferred.

Program B is usually known as Horner's Algorithm (see also Cheney and Kincaid, pp. 8
sqq.).

January 18, 2015 Page 2 of 7

Solutions to exercise set 1

2 Solve the two linear systems

11x1 + 10x2 + 14x3 = 1, 11x1 + 10x2 + 14x3 = 1,

12x1 + 11x2 − 13x3 = 1, and 12x1 + 11.01x2 − 13x3 = 1,

14x1 + 13x2 − 66x3 = 1, 14x1 + 13x2 − 66x3 = 1.

Also test what happens if the right hand side of the �rst equation is replaced by
1.001. Try to explain the results.

Possible solution:

The �rst system has the solution (x1, x2, x3) = (1,−1, 0); the second one the approxi-
mate solution (x1, x2, x3) ≈ (−0.243, 0.1217, 0.0036). Thus, changing only one coe�cient
of the equations by less than one tenth of a percent completely changes the solution�
note that even the sign pattern is di�erent. Similarly, if we choose the right hand side
to be (1.001, 1, 1) then we obtain results of approximately (0.4430,−0.3900, 0.0020) and
(0.0435, 0.0474, 0.0034). Again, the solution is extremely sensitive with respect to changes
in the data. This shows that the linear systems are ill-conditioned.

This can become a problem if the right hand side (or the coe�cients of the system) repre-
sents some real world data including measurement errors. In this case, even if the errors
can be guaranteed to be less than 0.1%, the solution of the system is basically worthless.

We can gain some additional insight if we compute the condition numbers (in for example
the Euclidean norm), using cond in MATLAB. The �rst system then has condition number
1.1 × 105, while the second has 1.4 × 104, so clearly the systems are very ill-conditioned.
We would already suspect this from the observation that approximately 2/3 times the �rst
row of the coe�cient matrix and 1/3 times the third equals the second. It turns out the
coe�cient matrices for these systems becomes singular for a22 ≈ 11.0010846.

3 Consider the �oating point system with 3 signi�cant digits and 2 decimal exponents,
i.e. numbers have the form ±d1.d2d3 × 10d4d5−49 with di ∈ {0, 1, 2, . . . , 9} for i =
1, 2, 3, 4, 5 and d1 6= 0. We assume no tricks so we can not represent zero.

a) Prove that two di�erent set of digits lead to two di�erent numbers, i.e. that
each machine number has a unique representation.

b) What is

• the smallest positive machine number?

• the smallest machine number strictly greater than one?

• the unit roundo� error/machine epsilon?

• the biggest possible number?

January 18, 2015 Page 3 of 7

Solutions to exercise set 1

Possible solution:

a) Suppose the statement is false. Two di�erent sets of digits leads to the same number.
It's obvious that both representations must have the same sign, so assume without
loss of generality they are both positive: d1.d2d3×10d4d5−49 and d∗1.d

∗
2d
∗
3×10d

∗
4d

∗
5−49.

If they are to represent the same number, we must have:

d1.d2d3
d∗1.d

∗
2d
∗
3

= 10d
∗
4d

∗
5−d4d5 . (1)

Suppose �rst that d4d5 = d∗4d
∗
5. Then clearly d4 = d∗4 and d5 = d∗5, and the right

hand side of (1) equals 1. Then we must have d1.d2d3 = d∗1.d
∗
2d
∗
3, which can only be

the case if d1 = d∗1, d2 = d∗2 and d3 = d∗3. This cannot be the case if the sets of digits
are to be di�erent.

Suppose now that d4d5 6= d∗4d
∗
5. Then for the right hand side of (1) we have

10d
∗
4d

∗
5−d4d5 ≤ 0.1 or 10d

∗
4d

∗
5−d4d5 ≥ 10. However because 1 ≤ d1.d2d3 ≤ 9.99 and

1 ≤ d1.d2d3 ≤ 9.99 it follows that the left hand side of (1) satis�es the inequality

0.1 <
1

9.99
≤ d1.d2d3
d∗1.d

∗
2d
∗
3

≤ 9.99 < 10

Thus it is not possible for the two numbers to be equal in this case as well.

We conclude that it is impossible for two numbers for two di�erent sets of digits to
lead to the same number.

What is

b)

the smallest positive machine number? Solution: 1.00× 10−49.

the smallest machine number strictly greater than one? Solution: 1.01.

the unit roundo� error/machine epsilon? Solution: 0.005.

the biggest possible number? Solution: 9.99× 1050.

4 Cf. Cheney & Kincaid, Exercise 1.1.54.

It is known that

π = 4− 8

∞∑
k=1

1

16k2 − 1
.

Thus, replacing the in�nite sum by the �nite sum

Kn = 4− 8
n∑

k=1

1

16k2 − 1

can be expected to give some approximation of π.

a) Estimate the size of the approximation error En := |π −Kn| in dependence of
the number of terms in the sum (assuming exact calculations).1

1Note that the approximation error can be very well estimated by a certain integral.

January 18, 2015 Page 4 of 7

Solutions to exercise set 1

b) Assuming you computeKn by the iterationK0 := 4, Kk+1 := Kk−8/(16k2−1),
provide an estimate of the quality of the best possible approximation of π when
using double precision. Is it possible to improve the results with a di�erent
implementation of the same formula?

c) Verify your results using Matlab.

Possible solution:

a) The n-th approximation error is

En = |π −Kn| =
∣∣∣8 ∞∑

k=n+1

1

16k2 − 1

∣∣∣ = 8
∞∑

k=n+1

1

16k2 − 1
.

De�ne now

f(x) :=
8

16x2 − 1
.

Then ∫ ∞
n+1

f(x) dx < En <

∫ ∞
n+2

f(x) dx.

Thus a good estimate of the error is

En ≈
∫ ∞
n+1

f(x) dx.

Now we compute∫
8

16x2 − 1
dx =

∫
4

4x− 1
− 4

4x+ 1
dx = log(4x− 1)− log(4x+ 1)

and therefore

En ≈
∫ ∞
n+1

8

16x2 − 1
dx = log(4n+ 5)− log(4n+ 3).

Now note that for large x we have

log(x+ 2)− log(x) ≈ 2

x

(which follows from a Taylor expansion of log). Thus

En ≈
2

4n+ 3
≈ 1

2n
.

b) Denote by ε the machine precision. Then the iterates won't change as soon as

8

16k2 − 1
≈ 2ε

(the factor 2 on the right hand side comes from the fact that the limit is somewhere
between 2 and 4), or

k ≈ 1

2
√
ε
.

January 18, 2015 Page 5 of 7

Solutions to exercise set 1

At that point the approximation error will be about

Ek ≈
√
ε

For double precision we obtain a predicted smallest possible error of around 10−8

with an iteration number n ≈ 5 · 107. Numerical experiments with Matlab (cf. the
program pi_approx.m) indicate that our predictions both concerning the iteration
at which the smallest possible error occurs and also about that error are indeed very
good.

It is possible to obtain better results by reversing the order of addition. That is,
one de�nes the sequence s1 := 8/(16n2 − 1) and sj+1 := sj +

8
16(n−j)2−1 and then

Kn := 4 − sn. Doing so, one avoids the problem of adding numbers of extremely
di�erent size, which is the cause of the failure of the method proposed in the exercise.
Numerical experiments with this method (cf. the program pi_approx2.m) con�rm
this assertion. Still, this is by no means an e�cient method for approximating π.

5 Solve the following linear systems using Gaussian elimination without pivoting or
report where the algorithm fails:

a)

x1 − 5x2 + x3 = 7,

10x1 + 20x3 = 6,

5x1 − x3 = 4.

b)

x1 + x2 − x3 = 1,

x1 + x2 + 4x3 = 2,

2x1 − x2 + 2x3 = 3.

c)

2x1 − 3x2 + 2x3 = 5,

−4x1 + 2x2 − 6x3 = 14,

2x1 + 2x2 + 4x3 = 8.

d)

x2 + x3 = 6,

x1 − 2x2 − x3 = 4,

x1 − x2 + x3 = 5.

Possible solution:

a) The solution is (x1, x2, x3) = (43/55,−347/275,−1/11).

b) The method breaks down at the second step.

c) The solution is (x1, x2, x3) = (109, 27,−66).

d) The method breaks down at the �rst step.

January 18, 2015 Page 6 of 7

Solutions to exercise set 1

6 Cf. Cheney and Kincaid, Computer Exercise 2.2.4.

The Hilbert matrix of order n is the n× n matrix with entries

aij =
1

i+ j − 1
for 1 ≤ i, j ≤ n.

It is a classical example of an invertible but ill-conditioned matrix.

a) Write a Matlab program that constructs, for given n ∈ N, the Hilbert matrix
of order n.

b) De�ne a vector b ∈ Rn setting bi =
∑

j aij . Then the solution of the linear
system Ax = b is the vector x with entries xi = 1. Does this also hold numer-
ically in the case where A is the Hilbert matrix of some moderate order (say
2 ≤ n ≤ 15)?

Possible solution:

There is some code to play with on the webpage concerning di�erent possibilities for the
construction of A. The vector b in the second part of the exercise can inMatlab be easily
de�ned as b=sum(A,2) (the second argument of this command means that one sums the
elements of the matrix A along its second dimension). For n ≤ 12 the numerical results of
the calculation A\b are somehow close to the true solution; for n ≥ 13 they are not.

January 18, 2015 Page 7 of 7

