
Page 1 of 17Norwegian University of Science and Technology
Department of Mathematical Sciences

MA2501 Numerical Methods
Eirik Hoel Høiseth

Semester Project

• This project counts for 30% of the final grade.

• You may work alone or in groups of two people.

• You have to produce a report written on a computer with your solutions
(preferably in LATEX, but there is nothing wrong with using something
else). The report should not exceed 8 pages.

You do not need to include code in your report. It is enough to refer
to the code files produced. It is fine to just go through the tasks point
by point and answer them. Just try to keep the document organized
and readable.

• Try to write somewhat efficient, organized, and well documented Mat-
lab code.

• The report, and the code produced, should be sent electronically to
eirik.hoiseth@math.ntnu.no. The deadline for everything is 20 March
at 18:00. Mark all the material with your candidate number(s), not
your name(s).

• Problems are roughly worth the same when grading.

Page 2 of 17

Matlab advice

All Matlab code created in this project should satisfy the following criteria:

• Function files should contain a help text. A user should be able to use
the routine from the information given by the command:
help [function name].

• The code should be self-documented, with a reasonable amount of com-
ments in the code.

• For the iterative methods, a warning message should be printed if the
iterations do not converge.

In addition try to make use of Matlab’s proficiency at working with vectors
and matrices, i.e. avoid unnecessary for-loops. Also try to avoid stuff like
repeating the same computation several times, rather than computing the
result once and storing it. Feel free to make use of built-in functions like
norm, max, sort, etc. Specifically feel free to use eig to get accurate values
of the eigenvalues and eigenvectors to compare with.

Estimating eigenvalues and eigenvectors

a) Implement the power method (with normalization), from Cheney & Kin-
caid, for computing eigenvalues and eigenvectors of a matrix A ∈ Rn×n

in Matlab. The first line of the function should be:
function [r,x,nIt,iFlag] = stdPowEig(A,x0,tol,nMax)
Specifications:

• Arguments in:

– A: An n× n real matrix.
– x0: An initial guess for the eigenvector of A associated with the

dominant eigenvalue.
– ε ≡ tol: An error tolerance.
– nMax: The maximum number of allowed iterations.

• Arguments out:

– r: The approximate value of the dominant eigenvalue of A.
– x: The approximation of the eigenvector of A associated with

the dominant eigenvalue.
– nIt: The number of iterations used.
– iFlag: A flag, telling whether the iterations were successful or

not.

• Additional details:

Page 3 of 17

– Let r(k) and x(k) denote the estimates after k iterations of the
dominant eigenvalue λ1 and corresponding eigenvector v1. Stop
the iterations when ‖x(k) − sgn(r(k))x(k−1)‖ ≤ ε (success) or
nIt = nMax (failure)

b) Test your power method on the following matrices

A1 =

4 4 4 −2
3 1 1 −1
2 −1 2 0
−1 5 1 −2

 , A2 =

5 −1 3 −1
−1 5 −3 1
−1 1 1 1
1 −1 3 3

 ,

A3 =

−14 −20 6 4
−20 −8 6 16

6 6 9 24
4 16 24 4

 .
Use several different random initial vectors and limit the calculations to
at most 20 iterations. Comment on the behaviour of the eigenvalue and
eigenvector sequences. Try to explain the observed behaviour.

c) For the remaining tasks assume the matrices are symmetric. For the
purposes of eigenvalue and eigenvector computations, symmetric matrices
have the following useful properties.

• The eigenvalues are real.
• There exists a full set of n eigenvectors v1,v1, . . . ,vn that are or-

thonormal with respect to the standard inner product on Rn. That
is for i, j = 1, 2, . . . , n

vT
i vj = δij =

{
1 if i = j,

0 otherwise.
(1)

• The matrix is orthogonally similar to a diagonal matrix (more on
this in the appendix).

Implement the following modification to the power method for symmetric
matrices. Let the eigenvalues be ordered by decreasing order of magni-
tude |λ1| > |λ2| ≥ |λ3| ≥ ≥ |λn|. Again, let r(k) and x(k) denote
the estimates after k iterations of the dominant eigenvalue λ1 and corre-
sponding eigenvector v1. Normalize the initial vector x(0) to unit length,
i.e. x(0)Tx(0) = ‖x(0)‖22 = 1, and compute new estimates as follows: For
k = 1, 2, 3, . . . , calculate

y(k) = Ax(k−1),

r(k) = x(k−1)Ty(k),

x(k) = y(k)/‖y(k)‖2.

Page 4 of 17

Call the modified procedure symPowEig, and keep the rest of the pro-
cedure identical to stdPowEig. Let e(k) denote the eigenvalue error in
computing λ1 after k steps, i.e. e(k) = |r(k) − λ1|. Verify experimentally
that for both methods, the dominant eigenvalue converges linearly like

ek+1 ≈ ek
(
|λ2|
|λ1|

)p

for some positive integer p. Determine the value of p for both methods.

d) Aitken acceleration can be used in symPowEig to speed up convergence.
Modify symPowEig to include Aitken acceleration. Call the modified pro-
cedure symPowEigAit. Investigate experimentally how this modification
impacts convergence of the eigenvalue and eigenvector.

e) Modify symPowEigAit to include the option to choose between the regular
and inverse power method, including shifts. To implement the inverse
power method, you may use Matlab to solve the linear system Ax = b
efficiently using the LU-factorization with row permutations

1) [L,U,p] = lu(A,’vector’);

2) x = U\(L\(b(p,:)));

Call the method symEig.

f) Consider the following matrix

B = A− λiviv
T
i ,

where (1) is assumed to hold. How does the eigenvectors and eigenvalues
of B compare to those of A?

g) Suggest and implement an algorithm to compute the m largest (in ab-
solute value) eigenvalues of A by modifying symPowEigAit based on the
previous result. Call the modified procedure symEigComp. The first line
should be
function [r,X,iFlag] = symEigComp(A,x0,m,tol,nMax)
where the modified arguments in and out are.

• Arguments in:

– A: An n× n real matrix.
– x0: An initial guess for an eigenvector of A.
– m the number of required eigenvalues.
– ε ≡ tol: The error tolerance for an eigenvalue-eigenvector pair.
– nMax: The maximum number of allowed iterations for an eigenvalue-

eigenvector pair.

Page 5 of 17

• Arguments out:
– r: An m × 1 vector with the eigenvalue approximations to the
m largest eigenvalues of A.

– X An n ×m matrix whose column vectors are the eigenvector
approximations.

– iFlag: An m×1 vector flag, telling which of the m estimations
that were successful.

h) Read the appendix part about Householder’s method. Show that ŵ given
by (8) solves (7).

i) Implement Householder’s method as described in the appendix. The al-
gorithm should take in a symmetric matrix A, and reduce this to a similar
symmetric tridiagonal matrix by calling Householder’s method. Call the
function householders. It should return just the nonzero elements of
this matrix as column vectors a and b corresponding to (10).

j) Implement the full QR-algorithm as described in the appendix. The al-
gorithm should take in a symmetric matrix A, reduce this to a similar
symmetric tridiagonal matrix by calling householders, and then deter-
mine and return the full set of eigenvalues of this matrix, using the de-
scribed algorithm. Call this function qrAlg. Test the algorithm on the
symmetric n × n matrix A = (aij) whose upper triangular part is given
by aij = n+ 1− j for 1 ≤ i ≤ j ≤ n . This matrix has known eigenvalues

λi =
1

2− 2 cos
[
π 2i−1
2n+1

] for i = 1, 2, 3 . . . , n.

Verify the eigenvalues experimentally for some reasonably large n > 300.
Plot the errors in the computed eigenvalues vs. i using logarithmic y-axis.

k) Briefly describe a way we could modify the QR-algorithm to also compute
the eigenvectors.

Hint: Recall that for similar matrices A and B related by (2), eigen-
vectors vA and vB corresponding to the same eigenvalue are related by
vA = MvB

l) Application: On the course web page you will find a Matlab data
file faces.mat. This contains 10 grey scale face images of 40 different
subjects1. Each image is represented as a 92 × 112 matrix of intensity
values between 0 and 1, where 0 equals black and 1 white. After load-
ing faces.mat you will have a variable faces which contains the images
stored as a 4 dimensional array (4 indexes are needed to give the po-
sition of an element). The pixel in position (i, j) of the image matrix

1The images are credited to the Database of Faces from AT&T Laboratories Cambridge

Page 6 of 17

of face image number k of person l is stored in faces(l,k,i,j). The
range of these indexes are thus 1 ≤ l ≤ 40, 1 ≤ k ≤ 10, 1 ≤ i ≤ 92
and 1 ≤ j ≤ 112. To display image k of person l use the command
imshow(squeeze(faces(l,k,:,:)).

Read the first part of the appendix on computing eigenfaces. Divide the
integers from 1 to 10 into 2 random sets, one Str with 7 and one Sts
with the remaining 3. Different groups are expected choose different sets.
Report your choice. The training set contains the 7 images for each person
which correspond to image numbers k ∈ Str. The remaining images, i.e.
the ones for which the images number k ∈ Sts, make up the test set.

Compute the eigenfaces for your training set. Use the QR algorithm to
compute the eigenvalues. Use the inverse power method, shifted with the
computed eigenvalues, to compute the eigenvectors and possibly refine
the returned eigenvalues. If you have not succeded in implementing the
QR-algorithm, you may use the built in Matlab function eig. Display
the first 8 eigenfaces uk k = 1, 2, . . . , 8 as greyscale faces2, along with the
average face Ψ.

Note: The Matlab function reshape is useful for transforming image
matrices to column vectors and vice versa.

m) Attempt to classify the images in your test set based on the approach
in the appendix. Choose the number of eigenfaces m̃ to use for the face
space such that 90% of the variation in the training set is accounted for,
i.e. choose the smallest m̃ such that∑m̃

i=1 λi∑m
i=1 λi

≥ 0.9

where the eigenvalues λi are sorted by decreasing absolute value. Then
try to identify all the images in the test set. Report some relevant results
from the experiment, and comment on the success of the method. Also
choose a correctly identified image Γ from the test set and include in the
report:

• A figure where you display (as grey scale images) Γ, the projection
of this image in face space Ω, and the face class Ω(k) it was identified
to.

• A plot of the Euclidean distance in face space εk against k = 1, 2, . . . 40.

Briefly discuss the following: How small can you choose m̃ before perfor-
mance deteriorates? What are some restrictions on the face images you
suspect are necessary for the method to work? Is the minimum face class

2Here it is a good idea to plot a scaled version of the eigenfaces uk/‖uk‖∞

Page 7 of 17

distance (15) significantly higher for the faces which are wrongly identi-
fied? Would it make sense to implement an upper limit for this metric,
such that the face is considered unknown if the value is higher than this.

Appendices

A Finding all eigenvalues of a symmetric matrix

From the perspective of exact arithmetic, symEigComp from task g) could be
used to determine all eigenvalues and eigenvectors of a matrix, provided the
eigenvalues all had distinct size. However, accumulation of roundoff error
makes this method impractical for computing more than the first few largest
eigenvalues and eigenvectors. We therefore look for an algorithm that can
compute all the eigenvalues of a symmetric matrix 3. Our chosen algorithm
consists of two main steps:

1. Reduce the symmetric matrix A to a similar symmetric tridiagonal
matrix using Householder’s method.

2. Apply the QR-algorithm to further reduce this symmetric tridiagonal
matrix to a similar matrix that is nearly diagonal. As the matrix be-
comes nearly diagonal, the diagonal elements become nearly the eigen-
values of this matrix, which are the same as the eigenvalues of A.

In both these steps the matrix is reduced using orthogonal similarity trans-
forms. Recall that an n×n matrix B is said to be similar to an n×n matrix
A if there exists an invertible n× n matrix M such that

B = M−1AM. (2)

Furthermore A and B have the same eigenvalues. To do similarity trans-
forms, i.e. convert A to B, it is desirable to use matrices M that are simple
to invert. Orthogonal matrices, i.e invertible n × n matrices Q such that
Q−1 = QT are clearly well suited for this purpose. This choice is motivated
by the fact that a symmetric matrix A is orthogonally similar to a diagonal
matrix D, i.e. there exists an orthogonal matrix Q such that

D = QTAQ.

A.1 Householder’s method

As mentioned, Householder’s method reduces the symmetric matrix A to a
similar symmetric tridiagonal matrix.

3The algorithm can also be modified to compute the eigenvectors, see task k)

Page 8 of 17

w
x

Hx

Figure 1: Hx corresponds geometrically to a reflection of a vector x across
the hyperplane whose normal vector is w

This method uses similarity transforms based on n × n Householder ma-
trices, H, defined as

H = I − 2
wwT

wTw

where I is the n×n identity matrix and w ∈ Rn is a non-zero column vector.
It is simple to show that H is both symmetric and orthogonal, meaning that
H−1 = H. This again implies that the similarity transform HAH preserves
the symmetry of A. A geometric interpretation of how H operates on a
vector x is shown in Figure 1.
Householder’s method performs n−2 such similarity transforms on A. Let

A(1) = A, A(k) be the matrix after k − 1 similarity transforms have been
applied, and H(k) be the Householder matrix used in the k-th similarity
transform, i.e.

A(k+1) = H(k)A(k)H(k). (3)

The trick is then to choose these transformations such that the final matrix

A(n−1) = H(n−2)H(n−3) . . .H(2)H(1)AH(1)H(2) . . .H(n−3)H(n−2)

is tridiagonal. The transformation with H(k) places zeros in the last n−k−1
elements of the k-th column, while preserving all previously created zeros
below the diagonal. Due to symmetry the same thing happens above the

Page 9 of 17

diagonal for the k-th row. The process is shown in (4) for a 5× 5 matrix

A(1) = A =

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

A(2) = H(1)AH(1) =

× × 0 0 0
× × × × ×
0 × × × ×
0 × × × ×
0 × × × ×

A(3) = H(2)H(1)AH(1)H(2) =

× × 0 0 0
× × × 0 0
0 × × × ×
0 0 × × ×
0 0 × × ×

 (4)

A(4) = H(3)H(2)H(1)AH(1)H(2)H(3) =

× × 0 0 0
× × × 0 0
0 × × × 0
0 0 × × ×
0 0 0 × ×

Each × here denotes an element which is not necessarily 0.
We now consider the problem of determining the k-th transformation ma-

trix Hk, and leave out the superscript for ease of notation. Thus H ≡ H(k),
A ≡ A(k) and w ≡ w(k) It turns out that this problem then amounts to
finding a vector w 6= 0, such that H satisfies

H

a1k
a2k
...
akk
ak+1,k

ak+2,k
...

an−1,k
an,k

=

a1k
a2k
...
akk
α
0
...
0
0

, (5)

where α is some real number. This gives n conditions for the n unknowns
wi i = 1, 2, . . . , n. Leaving ai,k unchanged for i = 1, 2, . . . , k is achieved by
setting

w1 = w2 = · · · = wk = 0. (6)

Page 10 of 17

Now, define

ŵ =

wk+1

wk+2
...

wn−1
wn

 ∈ Rn−k, â =

ak+1,k

ak+2,k
...

an−1,k
an,k

 ∈ Rn−k,

Ĥ = I − 2
ŵŵT

ŵT ŵ
∈ R(n−k)×(n−k),

and let I be the k×k identity matrix and ei ∈ R(n−k) be the vector where the
i-th element is 1 and all others 0. We see that (5) using (6) can be written

[
I 0

0 Ĥ

]
a1k
...
akk
â

 ==

a1k
...
akk
αe1

and the problem reduces to finding ŵ 6= 0 such that

Ĥâ = αe1 (7)

A solution to (7) is
ŵ = â± ‖â‖2e1,

and to ensure ŵ is non-zero, the sign is chosen to be

ŵ =

{
â + sgn(ak+1,k)‖â‖2e1, if ak+1,k 6= 0

â + ‖â‖2e1, if ak+1,k = 0
(8)

A few points which should be used to make the implementation reasonably
efficient are:

• In practice there is no need to form H since H is given by the choice
of w.

• If we first normalize w, so that ‖w‖22 = 1, we can write H as H =
I − 2wwT . Computation of the similarity transform HAH is then
tremendously simplified if we compute this as

u = Aw

k = wTAw = wTu

q = u− kw (9)

HAH = A− 2(wqT + qwT)

Page 11 of 17

Further simplification is possible by exploiting that in step k ≥ 1 the
first k elements of w are 0. From the format of A the first k − 1
elements of u and consequently q are also 0. This implies that the we
only have to compute the last n− k+ 1 elements of u and q, and only
need to change the last n− k + 1 rows and columns of A.

A.2 QR-factorization

In general the QR-factorization for square matrices factors the n×n matrix
A as A = QR where Q is an n × n orthogonal matrix and R is an upper
triangular matrix. This is a similar problem to the LU factorization, but
with the lower triangular L replaced by the orthogonal Q.
From the application of Householders method, we may assume that the

initial matrix A ≡ A(1) is symmetric tridiagonal

A =

a1 b1 0 . . . 0

b1 a2 b2
. . .

...

0 b2 a3
. . . 0

...
. bn−1

0 . . . 0 bn−1 an

. (10)

This simple structure allows for efficient computation of Q and R and the
product RQ using rotation matrices. Though the theory behind this is not
very complicated, a function qrStep which does this, has been provided in
order to limit the scope of the project.

A.3 QR-algorithm

The initial matrix is called A(1), again assumed on the form (10), i.e. sym-
metric and tridiagonal. Having computed the matrix A(k) k ≥ 1 the QR-
algorithm computes A(k+1) by first choosing a shift σk ∈ R and then

1. Factoring A(k) − σkI as Q(k)R(k).

2. Compute A(k+1) = R(k)Q(k) + σkI.

Since Q(k) is orthogonal it is clear that

A(k+1) = Q(k)TA(k)Q(k).

This means each step performs an orthogonal similarity transform, which as
mentioned preserves the eigenvalues of the matrix. The sequence of matri-
ces {A(k)}∞k=1 generated by this algorithm converges, with carefully chosen
shifts, rapidly towards a diagonal matrix. Because the eigenvalues of a diag-
onal matrix are simply the diagonal elements, the diagonal elements of the
matrices A(k) converge towards the eigenvalues of the original matrix.

Page 12 of 17

It is not hard to show that A(k+1) will be symmetric tridiagonal if A(k) is.
Thus A(k) for all k ≥ 1 has this beneficial structure, making all the iterations
efficient. This was the motivation for applying Householders method to the
original symmetric matrix.
In accordance with (10), let now a

(k)
i and b

(k)
i denote the diagonal and

off-diagonal elements of A(k), and λi denote the eigenvalue a(k)i converges
towards. We could use the QR-algorithm without shifts, i.e. σk = 0. How-
ever then convergence will be slow whenever the eigenvalues of A are closely
spaced in magnitude. To speed up convergence we shift the eigenvalues of
A(k) by subtracting a multiple of the identity matrix, σkI. This shifts all
eigenvalues by a constant σk, and is similar to the technique used with the
shifted inverse power method. The rate at which a(k)i converges towards λi
can become significantly faster if σk is sufficiently close to λi.
Initially the point of these shifts is to try to force the a(k)n to converge fast

towards λn. This is done by trying to force the off diagonal element b(k)n−1 to
tend towards 0 faster than b(k)j for any j < n − 1. A simple obvious choice

is then σk = a
(k)
n . However a generally better choice turns out to be to set

σk equal to the eigenvalue of the matrix[
a
(k)
n−1 b

(k)
n−1

b
(k)
n−1 a

(k)
n

]

closest to a(k)n . These eigenvalues are easily computed directly using the well
known formula for the roots of a quadratic polynomial. We then iterate
until |b(k)n−1| < ε where ε is some error tolerance. Then we return a(k)n as an
approximation of λn.
At this point we no longer have to include the last row and column of A(k)

in the computations, and we therefore work with the resulting (n−1)×(n−1)
matrix, which is again symmetric and tridiagonal, in subsequent iterations.
We now use shifts equal to the eigenvalue of the matrix[

a
(k)
n−2 b

(k)
n−2

b
(k)
n−2 a

(k)
n−1

]

and continue to iterate until |b(k)n−2| < ε. Then we return a(k)n−1 as an approx-
imation of λn−1.
Again the last row and column is no longer necessary, and we proceed with

the calculations on the (n− 2)× (n− 2) matrix consisting of the first n− 2
rows and columns of A(k).
In general when looking for λi, i = n, n − 1, . . . , 2 we work with the i × i

matrix consisting of the first i rows and columns of A(k). We use the shift

Page 13 of 17

σk equal to the eigenvalue of [
a
(k)
i−1 b

(k)
i−1

b
(k)
i−1 a

(k)
i

]

and return a(k)i as the approximation to λi when |b(k)i−1| < ε. Once |b(k)1 | < ε

we also return a(k)1 in addition to a(k)2 , since the eigenvalue of a 1× 1 matrix
is trivial.
We note in passing that once λi+1 has been computed, doing orthogonal

similarity transforms with the i× i matrix Q̃ on the first i rows and columns
is equivalent to doing orthogonal similarity transforms on the full n × n
matrix with the orthogonal matrix

Q =

[
Q̃ 0
0 I

]
∈ Rn×n.

This justifies only working with part of the original matrix in the QR-
algorithm.
A final note regarding implementation. As mentioned we should tech-

nically compute A(k+1) = R(k)Q(k) + σkI. However, in practice we don’t
usually add σkI. Instead we keep track of the accumulated shifts σk in a
variable Sk =

∑k
j=1 σj . We then return a

(k)
i + Sk rather than a

(k)
i as the

approximation to λi once convergence has been achieved, i.e. |b(k)i−1| < ε.

B Eigenfaces and principal component analysis

Automated face recognition have many interesting applications, e.g. criminal
identification, security systems and general human-computer interaction. We
here present a simple method for identifying a set of face images based on
eigenfaces and principal component analysis. 4

We assume we are given a number of grey scale face images, of the same
size, of a group of p individuals. Call this the training set, and denote it’s
size by m. Our problem can be described as follows: Given another set of
face images, termed the test set, of the same group of individuals, classify
these images according to the person they are depicting. For simplicity we
don’t allow for images of something other than a face or an unknown face,
i.e. a face which does not belong to a person in our group of individuals.
A normalized grey scale image can be considered as an n1 × n2 matrix

of intensity values between 0 and 1, where 0 equals black and 1 white. We
shall however in the following also treat the face images equivalently as size

4The material here is based on the article Eigenfaces for Recognition by Matthew Turk
and Alex Pentland

Page 14 of 17

(a) Sample face image (b) Sample eigenface

Figure 2

n = n1n2 column vectors, formed by placing all the columns of the matrix
in a vector.
Images of faces, then amounts to points in Rn. However since images of

faces are similar, these points will not be randomly distributed in space. The
main idea of principal component analysis is to attempt to find the vectors
that best accounts for the distribution of face images within the entire space
of images. These vectors define the subspace of face images, which we call
face space. These vectors uk turn out to be the eigenvectors of the covariance
matrix C for the original face images. Since they themselves resemble ghostly
faces, when considered as grey scale images, we call them eigenfaces. Below
we detail how to find the eigenfaces for the training set. A sample face image
and eigenface is shown in Figure 2

B.1 Computing the eigenfaces

Let the training set of images be Γ1,Γ2, . . . ,Γm ∈ Rn. The average face of
the set is defined as

Ψ =
1

m

m∑
l=1

Γl. (11)

Each face then differs from the average by

Φl = Γl −Ψ, l = 1, 2, . . . ,m. (12)

From principal component analysis, we now seek the set of m orthonormal
vectors uk ∈ Rn for 1 ≤ k ≤ m, which best describes the distribution of the
data. This is done by choosing uk such that the quantity

λk =
1

m

m∑
l=1

(uT
k Φl)

2.

Page 15 of 17

is maximized subject to the orthonormality constraint

uT
k ul = δlk =

{
1, if l = k

0 otherwise
(13)

uk and λk are the eigenvectors and eigenvalues respectively, of the covariance
matrix

C =
1

m

m∑
l=1

ΦlΦ
T
l = AAT ∈ Rn×n

where A = 1√
m

[Φ1,Φ2, . . . ,Φm]. However, since n equals the number of
pixels in the images, determining all the n eigenvectors and eigenvalues of C
is not a very attractive proposition, even for modest image sizes. Fortunately,
this is not required. Usually the number of images in the training setm� n,
and then there will only bem−1 rather than nmeaningful, i.e. not associated
with a zero eigenvalue, eigenvectors.
Furthermore, instead of solving for the n dimensional eigenvectors, uk,

of C directly, we can first solve for the m eigenvalues, µi and associated
eigenvectors, vi , i = 1, 2, . . . ,m, of the m ×m matrix L = ATA. To see
why, we start with the eigenvalue equation for L

ATAvi = µivi.

By multiplying on both sides with A we observe that

AATAvi = µiAvi.

From this we see that ũi = Avi is an eigenvector of C = AAT with equal
eigenvalue. Furthermore, since L has rank m − 1 (under the reasonable
assumption that all the images in the training set are unique), the m − 1
eigenvectors associated with a non-zero eigenvalue are exactly the m − 1
meaningful eigenvectors we are looking for. The computation of uk and λk
can thus be done as follows:

1. Compute the m eigenvalues, µi and associated eigenvectors, vi , i =
1, 2, . . . ,m, of the m×m matrix L = ATA.

2. Discard the 0 eigenvalue and associated eigenvector of L. Transform
the remaining m− 1 eigenvalues and associated eigenvectors of L into
the m − 1 nonzero eigenvalues, λi = µi and associated eigenvectors,
ũi = Avi of the n× n matrix C = AAT .

3. Normalize the set of eigenvectors ũi for i = 1, 2, . . . ,m−1, to get the set
of eigenvectors ui for i = 1, 2, . . . ,m that satisfies the orthonormality
constraint (13). These ui are the eigenfaces.

Page 16 of 17

B.2 Face recognition using eigenfaces

The eigenfaces ui, i = 1, 2, . . . ,m − 1, span a basis set which can be used
to describe and identify face images. The associated eigenvalues lets us
rank the eigenvectors according to their usefulness in accounting for the
variation among the images. Using all m− 1 eigenfaces is not necessary, so
we pick the m̃ < m eigenfaces associated with the largest (in absolute value)
eigenvalues. The m̃-dimensional vector space with this basis is called the
face space. The central process now is to transform a face image Γ into its
eigenface components, by a simple projection operation into face space

ωk = uT
k (Γ−Ψ) for k = 1, 2, . . . , m̃ (14)

These weights Ω = [ω1, ω2, . . . , ωm̃]T describes the contribution of each eigen-
face in describing how the input face image differs from the mean face Ψ.
Figure 3 shows the approximate representation of a face as the weighted sum

Γ ≈ Ψ +

m̃∑
k=1

ωkuk

of eigenfaces for various values of m̃.

(a) m̃ = 10 (b) m̃ = 50 (c) m̃ = 100

(d) m̃ = 150 (e) m̃ = 200 (f) m̃ = 250

Figure 3: Representation of a sample image in the training set using the face
space representation for various values of m̃. m is here 280

The classification process can now be described as follows

1. For each person j in the group j = 1, 2, . . . , p, compute the vector
of weights Ω(jl) = [ω

(jl)
1 , ω

(jl)
2 , . . . , ω

(jl)
m̃]T for each face image Φjl l =

1, 2, . . . , pj of that individual by the projection into face space, i.e.

ω
(jl)
k = uT

k [Φjl −Ψ]

Page 17 of 17

for k = 1, 2, . . . , m̃ and l = 1, 2, . . . , pj . Compute from this the class
vector, Ω(j), by averaging

Ω(j) =
1

pj

pj∑
s=1

Ω(jl).

2. For a given unknown face image Γ in the test set, compute the weights
vector Ω using (14). Then identify Γ with the person j that minimizes
the Euclidean distance to the associated class vector

εj = ‖Ω−Ω(j)‖2 (15)

