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Problem 1 Approximate the value of the integral∫ 1

0
e−x dx,

using the composite Simpson’s rule with n = 4 subintervals. Determine an upper
bound for the absolute error using the error term. Verify that the absolute error
is within this bound.
(10 points)

Suggested solution:
Applying composite Simpson’s rule with n = 4 subintervals, i.e. step-size h = 1/4,
to this integral we get∫ 1

0
e−x dx ≈ 1

3 · 4
(
e−0 + 4e−0.25 + 2e−0.5 + 4e−0.75 + e−1

)
≈ 0.6321342.

We want to find an upper bound for the absolute error using the general error
term for the composite Simpson’s rule applied to

∫ b
a f(x) dx

− 1
180(b− a)h4f (4)(ξ),

where ξ ∈ (a, b). Taking absolute values, and inserting a = 0, b = 1 and h = 1/4,
the absolute error E is

E = 1
180 · 44

∣∣∣f (4)(ξ)
∣∣∣ .

Since |f (4)(x)| = e−x is a decreasing positive function, we have the bound |f (4)(ξ)| ≤
e−0 = 1. Insertion gives the absolute error bound

E ≤ 1
46080 ≈ 2.2× 10−5.

To verify that the bound holds here, we easily compute the exact value of the
integral ∫ 1

0
e−x dx =

[
−e−x

]1
0

= −e−1 − (−e−0) = 1− e−1 ≈ 0.6321206

Thus the actual absolute error is (correct to the digits used)

|0.6321342− 0.6321206| ≈ 1.4× 10−5,

so the absolute error is within our bound. The bound quite closely bounds the
actual absolute error in this case.
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Problem 2

a) Consider the matrix

A =

 9 −3 −3
−3 10 1
−3 1 5

 .
Show that A has a unique Cholesky factorization, without computing it.
(5 points)

Suggested solution:
A is real and symmetric by inspection. This also means the eigenvalues of A
are real. Furthermore A is strictly diagonally dominant with positive diagonal
elements. It follows from Gerschgorin’s Theorem that all the eigenvalues of A are
positive. This in turn implies that A is positive definite. A is thus symmetric
positive definite (SPD) and consequently has a Cholesky factorization.

b) Compute the Cholesky factorization of A, and use it to solve the linear
system Ax = b with b = [−9,−1.5, 5]T .
(12.5 points)

Suggested solution:
We apply the algorithm for the Cholesky factorizations of A = [aij] as A = LLT

where L = [lij], i, j = 1, 2, 3.

l11 = √a11 = 3,
l21 = a12/a11 = −1,
l31 = a13/a11 = −1,

l22 =
√
a22 − l221 =

√
10− (−1)2 = 3,

l32 = a32 − l21l31

l22
= 1− (−1)(−1)

3 = 0,

l33 =
√
a33 − l231 − l232 =

√
5− (−1)2 − 02 = 2.

Thus

L =

 3 0 0
−1 3 0
−1 0 2

 .
A = LLT implies L(LTx) = b which means we can solve the linear system by
doing two triangular solves. First we solve the lower triangular system

Ly = b,
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for y = [y1, y2, y3]T using forward substitution

y1 = b1

l11
= −9

3 = −3,

y2 = b2 − l21y1

l22
= −1.5− (−1)(−3)

3 = −1.5,

y3 = b3 − l31y1 − l32y2

l33
= 5− (−1)(−3)− 0(−1.5)

2 = 1.

Second we solve the upper triangular system

LTx = y,

for x = [x1, x2, x3]T using back substitution.

x3 = y3

l33
= 1

2 = 0.5,

x2 = y2 − l32x3

l22
= −1.5− 0(0.5)

3 = −0.5,

x1 = y1 − l31x3 − l21x2

l11
= −3− (−1)(0.5)− (−1)(−0.5)

3 = −1.

The solution of the linear system is therefore x = [−1,−0.5, 0.5]T .

c) Perform 1 iteration of the SOR method with relaxation parameter ω = 1.1
for the linear system Ax = b from b). Use the starting point x(0) = [0, 0, 0]T .
Does it look like the iterations will converge towards the solution? Will the
iterations converge for an arbitrary starting point?
(10 points)



Page 4 of 11 MA2501: Numerical Methods, 4. June 2015

Suggested solution:
Using the notation x(i) = [x(i)

1 , x
(i)
2 , x

(i)
3 ]T and doing the iterations componentwise,

we get

x
(1)
1 = ω

b1 − a12x
(0)
2 − a13x

(0)
3

a11
+ (1− ω)x(0)

1

= 1.1−9− (−3)0− (−3)0
9 + (1− 1.1)0 = −1.1,

x
(1)
2 = ω

b2 − a21x
(1)
1 − a23x

(0)
3

a22
+ (1− ω)x(0)

2

= 1.1−1.5− (−3)(−1.1)− 1 · 0
10 + (1− 1.1)0 = −0.528,

x
(1)
3 = ω

b3 − a31x
(1)
1 − a32x

(1)
2

a33
+ (1− ω)x(0)

3

= 1.15− (−3)(−1.1)− 1(−0.528)
5 + (1− 1.1)0 = 0.49016.

Though based on very limited results, it certainly looks like the iterations are
converging towards the solution x = [−1,−0.5, 0.5]T found in b). The relative
error in every component is at most 10% after just a single iteration, and the error
decreases in the later components, where we use more updated values.

The iterations will in fact converge regardless of the starting point. We’ve de-
termined in a) that A is SPD with positive diagonal elements, which implies,
according to the Theorem on the convergence of the SOR method in Cheney &
Kincaid, that the SOR method will converge for all ω ∈ (0, 2) and any starting
point x(0).

Problem 3 Let f(x) be a polynomial of degree at most 3, i.e.

f(x) = Ax3 +Bx2 + Cx+D,

for some constants A,B,C,D ∈ R. Suppose furthermore we are given the n + 1
distinct knots a = t0 < t1 < . . . < tn = b on the interval [a, b].

Let S(x) be the clamped cubic interpolating spline for the table of values

x t0 t1 t2 · · · tn
y f(t0) f(t1) f(t2) · · · f(tn)
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that satisfies S ′(a) = f ′(a) and S ′(b) = f ′(b). For what values of A,B,C,D, if
any, will S(x) equal f(x) on [a, b]?

What if S(x) is instead the natural cubic interpolating spline for this table of
values?

Hint: S(x) is uniquely defined in both cases.
(10 points)

Suggested solution:
It is clear that for any A,B,C,D ∈ R, f(x) will be an interpolating cubic spline
here. In particular, it is a smooth function, which is a polynomial of degree at
most 3 on any interval, and clearly interpolates itself at any set of points. What
is left to check is the additional conditions that uniquely determines the spline.

For the clamped cubic spline, the criterion S ′(a) = f ′(a) and S ′(b) = f ′(b), is
again obviously satisfied if S(x) = f(x) on [a, b]. Thus the clamped cubic spline
S(x) will equal f(x) on [a, b] for any values of A,B,C,D.

For the natural cubic spline, the two additional criteria are S ′′(a) = 0 and S ′′(b) =
0. From

f ′′(x) = 6Ax+ 2B,

we see that for f to satisfy these criteria, we must require A = B = 0, i.e. f must
be a straight line. Thus the natural cubic spline S(x) will equal f(x) on [a, b] for
any values of C,D with A = B = 0.

Problem 4

a) The function f(x) = sin x has the unique zero x∗ = π on the interval [3, 4].
Perform 3 iterations of Newton’s method to approximate this zero. Use
x0 = 4.
Note: For the sake of task b) do not round off the calculated values.
(7.5 points)

Suggested solution:
Since f ′(x) = cos x the Newton iteration becomes

xn+1 = xn −
sin xn
cosxn

= xn − tan xn,
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for n = 0, 1, 2, · · · . Thus

x1 = x0 − tan x0 = 4− tan 4 = 2.842178718,
x2 = x1 − tan x1 = 2.842178718− tan 2.842178718 = 3.150872940,
x3 = x2 − tan x2 = 3.150872940− tan 3.150872940 = 3.141592387.

b) Determine the absolute error for xi, i = 0, 1, 2, 3, from a). Estimate the
order of convergence α. Explain this behaviour.
Hint: You can assume α ∈ N. A method with order of convergence α ∈ N
will behave like

|xn+1 − x∗| ≈M |xn − x∗|α,

for some positive constant M when |xn − x∗| becomes sufficiently small.
(12.5 points)

Suggested solution:
Using the notation, en ≡ |xn − x∗| we compute the absolute errors

e0 ≡ |x0 − x∗| = |4− π| ≈ 8.584× 10−1,

e1 ≡ |x1 − x∗| = |2.842178718− π| ≈ 2.994× 10−1,

e2 ≡ |x2 − x∗| = |3.150872940− π| ≈ 9.280× 10−3,

e3 ≡ |x3 − x∗| = |3.141592387− π| ≈ 2.666× 10−7.

Since the number of correct digits in the approximation appears to roughly triple
for each iteration, we suspect that the order of convergence is cubic, i.e α = 3. To
test this we follow the hint and compute the ratios

en+1

e3
n

.

This is done below

e1

e3
0
≈ 2.994× 10−1

(8.584× 10−1)3 ≈ 0.473,

e2

e3
1
≈ 9.280× 10−3

(2.994× 10−1)3 ≈ 0.346,

e3

e3
2
≈ 2.666× 10−7

(9.280× 10−3)3 ≈ 0.334.

These ratios do indeed appear to tend towards a constant, and we estimate the
order of convergence to be cubic. This behaviour is immediately a bit surprising,
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since Newton’s method normally gives quadratic convergence for sufficiently good
initial guesses. To explain this we look at this iteration as a fixed point iteration

xn+1 = g(xn)

with
g(x) = x− tan x.

From Theorem 10 in the note on fixed point iterations, we expect precisely cubic
order of convergence provided g′(x∗) = g′′(x∗) = 0, but g′′′(x∗) 6= 0. Computing
derivatives of g is straightforward

g′(x) = 1− 1
cos2 x

,

g′′(x) = −2 sin x
cos3 x

,

g′′′(x) = −2cos4 x+ 3 sin2 x cos2 x

cos6 x
= −2cos2 x+ 3 sin2 x

cos4 x
= −21 + 2 sin2 x

cos4 x
.

Evaluation at x = x∗ = π, gives g′(x∗) = g′′(x∗) = 0 and g′′′(x∗) = −2 6= 0, so
the observed cubic convergence is indeed as expected from the theory. In fact the
proof of the aforementioned theorem indicates that we should expect

M = |g
′′′(x∗)|
3! = 1

3 ,

which is consistent with our earlier ratio computations.

Problem 5

a) We want to approximate f ′′(x) with a computer, by using the forward dif-
ference rule

f ′′(x) ≈ f(x)− 2f(x+ h) + f(x+ 2h)
h2 ,

with h > 0. Assume that, in the above formula, all function values are
subject to round off error, so that the actual values used by the computer
are

f̃(x) = f(x)(1 + δ1),
f̃(x+ h) = f(x+ h)(1 + δ2),
f̃(x+ 2h) = f(x+ 2h)(1 + δ3),
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where |δi| ≤ ε, i = 1, 2, 3. Show the following upper bound for the total
approximation error∣∣∣∣∣f ′′(x)− f̃(x)− 2f̃(x+ h) + f̃(x+ 2h)

h2

∣∣∣∣∣ ≤ 5h
3 M1 + 4ε

h2M2,

where M1 = maxy∈[x,x+2h] |f ′′′(y)| and M2 = maxy∈[x,x+2h] |f(y)|.
(12.5 points)

Suggested solution:
We first compute an expression for the truncation error. Taylor expanding f(x+h)
and f(x+ 2h) gives

f(x+ h) = f (x) + hf ′ (x) + h2

2! f
′′ (x) + h3

3! f
′′′ (ξ1) ,

f(x+ 2h) = f (x) + 2hf ′ (x) + 22h2

2! f ′′ (x) + 23h3

3! f ′′′ (ξ2) .

with ξ1 ∈ (x, x + h) and ξ2 ∈ (x, x + 2h). Inserting this in the rule and grouping
in powers of h

f(x)− 2f(x+ h) + f(x+ 2h)
h2 = [f(x)− 2f(x) + f(x)] + h [−2f ′(x) + 2f ′(x)]

h2

+ h2 [−f ′′(x) + 2f ′′(x)] + h3 [−2f ′′(ξ1) + 8f ′′(ξ2)] /6
h2

= f ′′(x) + h
−2f ′′(ξ1) + 8f ′′(ξ2)

6 .

Now we include the rounding error

f̃(x)− 2f̃(x+ h) + f̃(x+ 2h)
h2 =

= f(x)− 2f(x+ h) + f(x+ 2h)
h2 + f(x)δ1 − 2f(x+ h)δ2 + f(x+ 2h)δ3

h2

= f ′′(x) + h
−2f ′′(ξ1) + 8f ′′(ξ2)

6 + f(x)δ1 − 2f(x+ h)δ2 + f(x+ 2h)δ3

h2 .
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From this we determine the bound∣∣∣∣∣f ′′(x)− f̃(x)− 2f̃(x+ h) + f̃(x+ 2h)
h2

∣∣∣∣∣ =

=
∣∣∣∣∣h−2f ′′(ξ1) + 8f ′′(ξ2)

6 + f(x)δ1 − 2f(x+ h)δ2 + f(x+ 2h)δ3

h2

∣∣∣∣∣
≤
∣∣∣∣∣h−2f ′′(ξ1) + 8f ′′(ξ2)

6

∣∣∣∣∣+
∣∣∣∣∣f(x)δ1 − 2f(x+ h)δ2 + f(x+ 2h)δ3

h2

∣∣∣∣∣
≤ h

2 |f ′′(ξ1)|+ 8 |f ′′(ξ2)|
6 + |f(x)| |δ1|+ 2 |f(x+ h)| |δ2|+ |f(x+ 2h)| |δ3|

h2

≤ h
5
3M1 + 4ε

h2M2.

b) Find the positive value of h, hmin, that minimizes the upper bound from a),
taking M1, M2 and ε to be known and positive constants.
(5 points)

Suggested solution:
It is obvious that the bound tends to infinity when h → 0 or h → ∞, so there
must be some global minimum. Since the function is differentiable for h > 0 this
minimum happens when the derivative with respect to h is 0. Thus

5
3M1 −

8ε
h3
min

M2 = 0.

Isolating hmin gives

hmin = 3

√
24εM2

5M1
.

c) Compute an approximation of hmin for f(x) = ln x and x = 2, using
ε = 1.1× 10−16 (double precision), M1 ≈ |f ′′′(x)| and M2 ≈ |f(x)|.
Estimates of f ′′(x) in this case, using the forward difference rule, were cal-
culated on a computer with double precision. The corresponding absolute
errors are given in the table below. Do these results agree with our analysis?
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h Absolute error
10−1 0.022985146546089
10−2 0.002478310901527
10−3 0.000249781382827
10−4 0.000024981537422
10−5 0.000001089537932
10−6 0.000133247448048
10−7 0.016853164828717
10−8 0.250000000000000

(5 points)

Suggested solution:
For the specific case we have M1 ≈ 2/23 = 1/4 and M2 ≈ ln 2. Insertion of this
and the value for ε gives

hmin ≈
3

√
4 · 24 · 1.1× 10−16 · ln 2

5 ≈ 1.1× 10−5

Regarding the table, we see that the approximation error initally decreases as O(h)
(truncation error dominating), reaches a minimum around hmin, before roughly
increasing as O(1/h2) (round off error dominating). Thus the results mesh well
with what is expected from our analysis. Note that in the last line h has become so
small that the numerator in the estimate for f ′′(x), and consequently the estimate
itself, evaluated to 0.

Problem 6 Consider the following initial value problem for x(t) : R→ R and
y(t) : R→ R

x′′ = e−x
′ + x− cos t,

y′ = 3
√
y − tx′,

x(0) = −2, x′(0) = 0, y(0) = 8.

Convert this problem to an equivalent system of first-order differential equations
in autonomous vector form, with initial values. Take 2 steps with Euler’s method
with step-size h = 0.5 for this system.
(10 points)



MA2501: Numerical Methods, 4. June 2015 Page 11 of 11

Suggested solution:
By introducing new variables

X =


x0
x1
x2
x3

 =


t
x
x′

y

 ,

we arrive at the system

X′ =


x′0
x′1
x′2
x′3

 =


1
x2

e−x2 + x1 − cos(x0)
3
√
x3 − x0x2

 = F(X),

with initial conditions

X(0) =


x0(0)
x1(0)
x2(0)
x3(0)

 =


0
−2
0
8

 = X0.

We now take two steps with Euler’s method, denoting by Xn the result after n
steps.

X1 = X0 + hF(X0) =


0
−2
0
8

+ 0.5


1
0
−2
2

 =


0.5
−2
−1
9

 ,

X2 = X1 + hF(X1) =


0.5
−2
−1
9

+ 0.5


1
−1

e1 − 2− cos 0.5
3
√

9− 0.5(−1)

 ≈


1.00000
−2.50000
−1.07965
10.2900

 .

We remark that the exact solution is X(1) = [1.00000,−2.66886,−1.05234, 10.5098]T ,
accurate to the digits given. Therefore the approximation is not very accurate.
This should be expected, since we are using a first order method with a fairly large
step-size.


