1 Consider the initial value problem

$$
\begin{aligned}
x^{\prime} & =\sin \left(t^{2}+x\right), \\
x(0) & =0 .
\end{aligned}
$$

a) Use Euler's method with a step size of $h=1 / 4$ in order to obtain an approximation of $x(2)$.
b) Use the improved Euler method (Heun's second order method) with a step size of $h=1 / 2$ in order to obtain an approximation of $x(2)$.
c) Use the classical Runge-Kutta method with a step size of $h=1$ in order to obtain an approximation of $x(2)$.

02 Assume that the function $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous and decreasing in its second component. That is,

$$
f(t, x) \leq f(t, z) \quad \text { whenever } \quad x \geq z
$$

Show that the implicit Euler method for the solution of the differential equation

$$
\begin{aligned}
x^{\prime} & =f(t, x), \\
x\left(t_{0}\right) & =x_{0},
\end{aligned}
$$

is well-defined. That is, regardless of the step-size $h>0$, the (non-linear) equation that has to be solved in each iteration has a unique solution.

3 Compute three steps with step size $h=1$ for the numerical solution of the differential equation

$$
\begin{aligned}
x^{\prime} & =-3 x-e^{x}, \\
x(0) & =1,
\end{aligned}
$$

using
a) Euler's method,
b) the improved Euler method,
c) the implicit Euler method. Numerically solve the non-linear equations you obtain by performing two steps of Newton's method in each step of the implicit Euler method.

4 The third order Adams-Bashforth method has the form

$$
\begin{aligned}
x_{k+1} & =x_{k}+h\left(\frac{23}{12} f_{k}-\frac{16}{12} f_{k-1}+\frac{5}{12} f_{k-2}\right) \\
t_{k+1} & =t_{k}+h \\
f_{k+1} & =f\left(t_{k+1}, x_{k+1}\right)
\end{aligned}
$$

Show that this method can be derived by interpolating the function $\tau \mapsto f(\tau, x(\tau))$ in the points t_{k-2}, t_{k-1}, and t_{k} and then integrating the resulting quadratic polynomial.

5 Consider the differential equation

$$
\begin{aligned}
x^{\prime} & =x-\frac{x^{2}}{2}, \\
x(0) & =1 .
\end{aligned}
$$

Compute three steps with step size $h=1$ using:
a) the second order Adams-Bashforth method,
b) the second order Adams-Moulton method,
c) the second order Adams-Bashforth-Moulton method.

In all three cases, use the improved Euler method for computing the iterate x_{1}.

6 Consider the second order initial value problem

$$
\begin{aligned}
x^{\prime \prime} & =-\sin (x)+x^{\prime} \\
x(0) & =0 \\
x^{\prime}(0) & =1
\end{aligned}
$$

a) Rewrite the second order equation as a system of first order equations.
b) Compute two steps of the classical Runge-Kutte method with step size $h=1 / 2$ in order to obtain an approximation of $x(1)$.

7 a) Determine an autonomous system of first order differential equations with accompanying initial conditions written in vector form as

$$
\left\{\begin{array}{l}
\mathbf{X}^{\prime}=\mathbf{F}(\mathbf{X}), \\
\mathbf{X}(a)=\mathbf{S}
\end{array}\right.
$$

for the following system

$$
\left\{\begin{array}{l}
x^{\prime \prime}=\sqrt{\frac{6}{1+x^{2}}}-\frac{1}{2+y^{2}}+\sin t-2 \cos \left(x^{\prime} y^{\prime \prime}\right) \\
y^{\prime \prime \prime}=-\sqrt{\frac{4}{1+x^{2}}}-\frac{1}{1+y^{4}}+\cos t+\sin \left(x^{2} y^{\prime}\right) \\
x(2)=2, \quad x^{\prime}(2)=1, \quad y(2)=-1, \quad y^{\prime}(2)=0, \quad y^{\prime \prime}(2)=3
\end{array}\right.
$$

b) Write down one step of the Explicit Euler method and the classical fourth order Runge-Kutta method for this system (C\&K p. 314).
c) Implement both methods in the previous part in MATLAB, and use them to approximately solve the system from $t=2$ to $t=10$ with $h=0.1$ and $h=0.01$. Then, find an "exact" solution by using the built in solver ode45 in MATLAB with very low error tolerances. Finally, plot the approximate solutions of y from both methods along with the "exact" solution of y and compare the results.

Note: ode45 requires that the function on the right hand side of the differential equation is of a nonautonomous type, i.e. $f(t, x)$. Use odeset to set 'RelTol' to 10^{-12} and 'AbsTol' to 10^{-15} for the 'exact' solution. See the documentation of ode 45 in MATLAB for further details on how to use it.

