1 Consider the general iterative method

$$
\mathbf{Q} \mathbf{x}^{(k+1)}=(\mathbf{Q}-\mathbf{A}) \mathbf{x}^{(k)}+\mathbf{b}
$$

with invertible matrices $\mathbf{A}, \mathbf{Q} \in \mathbb{R}^{n \times n}$ for the solution of the linear system $\mathbf{A x}=\mathbf{b}$. Assume that the matrix $\mathbf{I}-\mathbf{Q}^{-1} \mathbf{A}$ has an eigenvalue $\lambda \in \mathbb{R}$ with $|\lambda| \geq 1$. Show that there exists a starting vector $\mathbf{x}^{(0)}$ for which the iteration does not converge to a solution of the equation $\mathbf{A x}=\mathbf{b}$.
Hint: Consider a starting vector of the form $\hat{\mathbf{x}}+\mathbf{u}$, where $\hat{\mathbf{x}}$ is the solution of $\mathbf{A x}=\mathbf{b}$ and $\mathbf{u}$ is an eigenvector of $\mathbf{I}-\mathbf{Q}^{-1} \mathbf{A}$.

2 a) Assume that the matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric and positive definite. Show that there exists some parameter $\lambda>0$ such that the damped Richardson iteration

$$
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-\frac{1}{\lambda}\left(\mathbf{A} \mathbf{x}^{(k)}-\mathbf{b}\right)
$$

converges to a solution of the equation $\mathbf{A x}=\mathbf{b}$.
b) Consider now the linear system

$$
\left[\begin{array}{lll}
3 & 1 & 1 \\
1 & 3 & 1 \\
1 & 1 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 \\
-4 \\
3
\end{array}\right]
$$

(Note that the matrix of this system has already appeared in exercise ??.) Find a suitable damping parameter $\lambda$ and compute an approximation of the solution of this system using three steps of damped Richardson iteration.

3 Compute approximate solutions of the linear system

$$
\left[\begin{array}{ccc}
3 & -1 & 1 \\
0 & 5 & 2 \\
-1 & -1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
6 \\
-1 \\
6
\end{array}\right]
$$

using
a) three steps of the Jacobi method,
b) three steps of the Gauss-Seidel method,
c) three steps of the SOR-method with parameter $\omega=1.5$.

Use the starting value $\mathbf{x}^{(0)}=(0,0,0)^{T}$ in all cases.

4 Implement in Matlab the Jacobi method for the iterative solution of linear systems.
Test the method on the linear systems of exercises 2 and 3. In addition, test it on the matrix $\mathbf{A} \in \mathbb{R}^{200 \times 200}$ with main diagonal $\mathbf{d}=[4,4, \ldots, 4]$ and lower and upper diagonals $\mathbf{a}=\mathbf{c}=[-1,-1, \ldots,-1]$, and the right hand sides $\mathbf{b}_{1}=[1, \ldots, 1]^{T}$ and $\mathbf{b}_{2}=[1,2,3, \ldots, 200]^{T}$.

Note: The Jacobi method in MatLaB will be rather efficient if you implement it using matrix-vector products. The command diag can be used both for extracting diagonals of a matrix and constructing diagonal matrices; for instance, diag(diag(A)) will produce a diagonal matrix with the same diagonal entries as $\mathbf{A}$.

5 Assume that the matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is diagonally dominant. Show that the Jacobi iteration for the solution of the system $\mathbf{A x}=\mathbf{b}$ converges.
Hint: You may want to show that the matrix $\mathbf{I}-\mathbf{Q}^{-1} \mathbf{A}$ defining the iteration satisfies $\left\|\mathbf{I}-\mathbf{Q}^{-1} \mathbf{A}\right\|_{\infty}<1$.

6 Use appropriate interpolating polynomials in Lagrange form of degrees one, two and three to approximate each of the following:
a) $f(8.4)$ if $f(x)=x \ln x$ and the nodes are 8.1, 8.3, 8.6 and 8.7.
b) $f(-1 / 3)$ if $f(x)=x^{4}-x^{3}+x^{2}-x+1$ and the nodes are $-0.75,-0.5,-0.25$ and 0 .

7 Use Neville's algorithm to obtain the approximations for the previous exercise

