

1 a) Compute the LDL^T and, if possible, Cholesky factorization of the following matrices:

	(-2)	-4	6	$-2\rangle$			(´ 1	2	-3	$1 \rangle$	
$\mathbf{A}_1 =$	-4	-5	12	-7	,	Δ	_	2	7	-6	-1).
	6	12	-17	7		\mathbf{A}_2 =	-	-3	-6	10	-2	
	$\sqrt{-2}$	-7	7	1 /				1	-1	-2	6 /	

b) Use the previously computed factorizations to solve the linear systems $\mathbf{A}_j x = \mathbf{b}$ with $\mathbf{b} = [-3, 3, 1, -3]^T$.

- 2 How many operations are required for the computation of the Cholesky factorization of a symmetric and positive definite matrix? Compare the result with the numerical complexity of the LU factorization.
- 3 Write a MATLAB program for the solution of a linear system $\mathbf{Ax} = \mathbf{b}$ with symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ using the LDL^T factorization. Include some error messages for the situation that \mathbf{A} is non-symmetric or the factorization fails.
- 4 Use the bisection method for finding a solution of the equation $x^2 2 = 0$ (i.e., for computing $\sqrt{2}$) starting with the interval [1, 2]. Stop the computations when the error is smaller than 10^{-3} . How many iterations would be needed to obtain a result with an error smaller than 10^{-12} ?
- 5 Implement the bisection method in MATLAB. Your program should take as an input the two initial points a < b, the desired accuracy $\varepsilon > 0$, and a reference to the function f a root of which is to be computed.

Use your program for finding the solution of the equation $\tan(x) = 0$ in the interval [2, 4] (which should be π) and a solution of the equation $3\cos(x)\sin(x^2) = 1$ in the interval [0, 10]. What happens if you apply the method to the equation $\tan(x) = 0$ with the starting interval [1, 2]?

6 Suppose f(x) is C[a, b] with a sign change on and unique zero in the interior of [a, b]. Let h(x) = f(x)g(x) where g(x) is a positive and continuus function on [a, b]. Let c_f^n and c_h^n be the *n*-th approximation from the Bisection method to the root of f and h respectively, with initial interval [a, b]. Can we say anything about c_f^n compared to c_h^n ?