

1 Consider the following two segments of pseudocode:

Program A:

Data: a vector $a = [a_0, a_1, ..., a_n]$ of real numbers, a real number x; **Output**: a real number y; **Initialization**: $y \leftarrow a_0$; for k = 1 to n do $| y \leftarrow y + a_k x^k$; end

Program B:

Data: a vector $a = [a_0, a_1, \ldots, a_n]$ of real numbers, a real number x; **Output**: a real number y; **Initialization**: $y \leftarrow a_n$; **for** k = n - 1 **to** 0 **by** -1 **do** $| y \leftarrow a_k + xy$; **end**

- a) What do these programs actually do?
- **b)** In theory, both programs should yield the same result. Can they be expected to do so also numerically?
- ${\bf c})$ Which of the programs is usually preferable?

2 Solve the two linear systems

 $11x_1 + 10x_2 + 14x_3 = 1, 11x_1 + 10x_2 + 14x_3 = 1,$ $12x_1 + 11x_2 - 13x_3 = 1, and 12x_1 + 11.01x_2 - 13x_3 = 1,$ $14x_1 + 13x_2 - 66x_3 = 1, 14x_1 + 13x_2 - 66x_3 = 1.$

Also test what happens if the right hand side of the first equation is replaced by 1.001. Try to explain the results.

3 Consider the floating point system with 3 significant digits and 2 decimal exponents, i.e. numbers have the form $\pm d_1 \cdot d_2 d_3 \times 10^{d_4 d_5 - 49}$ with $d_i \in \{0, 1, 2, \dots, 9\}$ for i = 1, 2, 3, 4, 5 and $d_1 \neq 0$. We assume no tricks so we can not represent zero.

- a) Prove that two different set of digits lead to two different numbers, i.e. that each machine number has a unique representation.
- **b**) What is
 - the smallest positive machine number?
 - the smallest machine number strictly greater than one?
 - the unit roundoff error/machine epsilon?
 - the biggest possible number?

4 Cf. Cheney & Kincaid, Exercise 1.1.54.

It is known that

a)

$$\pi = 4 - 8 \sum_{k=1}^{\infty} \frac{1}{16k^2 - 1}.$$

Thus, replacing the infinite sum by the finite sum

$$K_n = 4 - 8\sum_{k=1}^n \frac{1}{16k^2 - 1}$$

can be expected to give some approximation of π .

- a) Estimate the size of the approximation error $E_n := |\pi K_n|$ in dependence of the number of terms in the sum (assuming exact calculations).¹
- b) Assuming you compute K_n by the iteration $K_0 := 4$, $K_{k+1} := K_k 8/(16k^2 1)$, provide an estimate of the quality of the best possible approximation of π when using double precision. Is it possible to improve the results with a different implementation of the same formula?
- c) Verify your results using MATLAB.
- 5 Solve the following linear systems using Gaussian elimination without pivoting or report where the algorithm fails:

b)

,		,	
	$x_1 - 5x_2 + x_3 = 7,$		$x_1 + x_2 - x_3 = 1$
	$10x_1 + 20x_3 = 6,$		$x_1 + x_2 + 4x_3 = 2$
	$5x_1 \qquad - x_3 = 4.$		$2x_1 - x_2 + 2x_3 = 3$
c)		d)	
	$2x_1 - 3x_2 + 2x_3 = 5,$		$x_2 + x_3 = 6,$
	$-4x_1 + 2x_2 - 6x_3 = 14,$		$x_1 - 2x_2 - x_3 = 4,$
	$2x_1 + 2x_2 + 4x_3 = 8.$		$x_1 - x_2 + x_3 = 5.$

¹Note that the approximation error can be very well estimated by a certain integral.

6 Cf. Cheney and Kincaid, Computer Exercise 2.2.4.

The *Hilbert matrix* of order n is the $n \times n$ matrix with entries

$$a_{ij} = \frac{1}{i+j-1} \qquad \text{for } 1 \le i, j \le n.$$

It is a classical example of an invertible but ill-conditioned matrix.

- a) Write a MATLAB program that constructs, for given $n \in \mathbb{N}$, the Hilbert matrix of order n.
- **b)** Define a vector $b \in \mathbb{R}^n$ setting $b_i = \sum_j a_{ij}$. Then the solution of the linear system Ax = b is the vector x with entries $x_i = 1$. Does this also hold numerically in the case where A is the Hilbert matrix of some moderate order (say $2 \le n \le 15$)?

MATLAB-comments

A straightforward construction of the Hilbert matrices uses a double loop for filling up its entries one at a time. One important thing to remember about MATLAB is, however, that loops are usually extremely slow and thus should be avoided whenever (sensibly) possible. A typical strategy for doing so is the *vectorization* of operations: Instead of applying an operation to single elements, one applies it simultaneously to a whole vector or an array. In this example it is, for instance, easily possible to build up the matrix one row (or column) at a time, thus reducing the double loop to a single loop.

Some further comments:

- In this example the speed increase through vectorization will not be noticeable. In future exercises, the situation might be different, though.
- Probably the fastest and simplest way of doing the implementation is by invoking the MATLAB-command hilb, which produces a Hilbert matrix. Don't do that.