1 Consider the following two segments of pseudocode:

Program A:

Data: a vector $a=\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ of real numbers, a real number x;
Output: a real number y;
Initialization: $y \leftarrow a_{0}$;
for $k=1$ to n do
$y \leftarrow y+a_{k} x^{k} ;$
end

Program B:

Data: a vector $a=\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ of real numbers, a real number x;
Output: a real number y;
Initialization: $y \leftarrow a_{n}$;
for $k=n-1$ to 0 by -1 do $y \leftarrow a_{k}+x y ;$
end
a) What do these programs actually do?
b) In theory, both programs should yield the same result. Can they be expected to do so also numerically?
c) Which of the programs is usually preferable?

2 Solve the two linear systems

$$
\begin{aligned}
& 11 x_{1}+10 x_{2}+14 x_{3}=1, \\
& 12 x_{1}+11 x_{2}-13 x_{3}=1, \\
& 14 x_{1}+13 x_{2}-66 x_{3}=1,
\end{aligned} \quad \text { and } \quad \begin{aligned}
& 11 x_{1}+10 x_{2}+14 x_{3}=1, \\
& 12 x_{1}+11.01 x_{2}-13 x_{3}=1, \\
& 14 x_{1}+13 x_{2}-66 x_{3}=1 .
\end{aligned}
$$

Also test what happens if the right hand side of the first equation is replaced by 1.001. Try to explain the results.

3 Consider the floating point system with 3 significant digits and 2 decimal exponents, i.e. numbers have the form $\pm d_{1} \cdot d_{2} d_{3} \times 10^{d_{4} d_{5}-49}$ with $d_{i} \in\{0,1,2, \ldots, 9\}$ for $i=$ $1,2,3,4,5$ and $d_{1} \neq 0$. We assume no tricks so we can not represent zero.
a) Prove that two different set of digits lead to two different numbers, i.e. that each machine number has a unique representation.
b) What is

- the smallest positive machine number?
- the smallest machine number strictly greater than one?
- the unit roundoff error/machine epsilon?
- the biggest possible number?

4 Cf. Cheney \& Kincaid, Exercise 1.1.54.

It is known that

$$
\pi=4-8 \sum_{k=1}^{\infty} \frac{1}{16 k^{2}-1}
$$

Thus, replacing the infinite sum by the finite sum

$$
K_{n}=4-8 \sum_{k=1}^{n} \frac{1}{16 k^{2}-1}
$$

can be expected to give some approximation of π.
a) Estimate the size of the approximation error $E_{n}:=\left|\pi-K_{n}\right|$ in dependence of the number of terms in the sum (assuming exact calculations) ${ }^{1}$
b) Assuming you compute K_{n} by the iteration $K_{0}:=4, K_{k+1}:=K_{k}-8 /\left(16 k^{2}-1\right)$, provide an estimate of the quality of the best possible approximation of π when using double precision. Is it possible to improve the results with a different implementation of the same formula?
c) Verify your results using Matlab.

5 Solve the following linear systems using Gaussian elimination without pivoting or report where the algorithm fails:
a)

$$
\begin{aligned}
& x_{1}-5 x_{2}+x_{3}=7, \\
& 10 x_{1}+20 x_{3}=6 \text {, } \\
& 5 x_{1} \quad-\quad x_{3}=4 .
\end{aligned}
$$

c)

$$
\begin{aligned}
2 x_{1}-3 x_{2}+2 x_{3} & =5, \\
-4 x_{1}+2 x_{2}-6 x_{3} & =14, \\
2 x_{1}+2 x_{2}+4 x_{3} & =8 .
\end{aligned}
$$

b)

$$
\begin{array}{r}
x_{1}+x_{2}-x_{3}=1, \\
x_{1}+x_{2}+4 x_{3}=2, \\
2 x_{1}-x_{2}+2 x_{3}=3 .
\end{array}
$$

d)

$$
\begin{array}{r}
x_{2}+x_{3}=6, \\
x_{1}-2 x_{2}-x_{3}=4, \\
x_{1}-x_{2}+x_{3}=5 .
\end{array}
$$

[^0]
6 Cf. Cheney and Kincaid, Computer Exercise 2.2.4.

The Hilbert matrix of order n is the $n \times n$ matrix with entries

$$
a_{i j}=\frac{1}{i+j-1} \quad \text { for } 1 \leq i, j \leq n
$$

It is a classical example of an invertible but ill-conditioned matrix.
a) Write a Matlab program that constructs, for given $n \in \mathbb{N}$, the Hilbert matrix of order n.
b) Define a vector $b \in \mathbb{R}^{n}$ setting $b_{i}=\sum_{j} a_{i j}$. Then the solution of the linear system $A x=b$ is the vector x with entries $x_{i}=1$. Does this also hold numerically in the case where A is the Hilbert matrix of some moderate order (say $2 \leq n \leq 15)$?

Matlab-comments

A straightforward construction of the Hilbert matrices uses a double loop for filling up its entries one at a time. One important thing to remember about Matlab is, however, that loops are usually extremely slow and thus should be avoided whenever (sensibly) possible. A typical strategy for doing so is the vectorization of operations: Instead of applying an operation to single elements, one applies it simultaneously to a whole vector or an array. In this example it is, for instance, easily possible to build up the matrix one row (or column) at a time, thus reducing the double loop to a single loop.
Some further comments:

- In this example the speed increase through vectorization will not be noticeable. In future exercises, the situation might be different, though.
- Probably the fastest and simplest way of doing the implementation is by invoking the Matlab-command hilb, which produces a Hilbert matrix. Don't do that.

[^0]: ${ }^{1}$ Note that the approximation error can be very well estimated by a certain integral.

