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1. Fixed Point Iteration for Non-linear Equations

Our goal is the solution of an equation

(1) F (x) = 0,

where F : Rn → Rn is a continuous vector valued mapping in n variables. Since
the target space is the same as the domain of the mapping F , one can equivalently
rewrite this as

x = x+ F (x).

More general, if G : Rn → Rn×n is any matrix valued function such that G(x) is
invertible for every x ∈ Rn, then (1) is equivalent to the equation

G(x)F (x) = 0,

which in turn is equivalent to

x = x+G(x)F (x).

Setting
Φ(x) := x+G(x)F (x),

it follows that x solves (1), if and only if x solves Φ(x) = x; that is, x is a fixed
point of Φ.

A simple idea for the solution of fixed point equations is that of fixed point
iteration. Starting with any point x(0) ∈ Rn (which, preferably, should be an
approximation of a solution of (1)), one defines the sequence (x(k))k∈N ⊂ Rn by

x(k+1) := Φ(x(k)).

The rationale behind that definition is the fact that this sequence will become
stationary after some index k, if (and only if) x(k) is a fixed point of Φ. Moreover,
one can assume that x(k) is close to a fixed point, if x(k) ≈ x(k+1). In the following
we will investigate conditions that guarantee that this iteration actually works. To
that end, we will have to study (shortly) the concept of matrix norms.

2. Matrix Norms

Recall that a vector norm on Rn is a mapping ‖·‖ : Rn → R satisfying the
following conditions:

• ‖x‖ > 0 for x 6= 0.
• ‖λx‖ = |λ|‖x‖ for x ∈ Rn and λ ∈ R.
• ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ Rn.

Since the space Rn×n of all matrices is also a vector space, it is also possible to
consider norms there. In contrast to usual vectors, it is, however, also possible to
multiply matrices (that is, the matrices form not only a vector space but also an
algebra). One now calls a norm on Rn×n a matrix norm, if the norm behaves well
under multiplication of matrices. More precisely, we require the norm to satisfy (in
addition) the condition:
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• ‖AB‖ ≤ ‖A‖‖B‖ for all A, B ∈ Rn×n.

This condition is called the sub-multiplicativity of the norm.
Assume now that we are given a norm ‖·‖ on Rn. Then this norm induces a

norm on Rn×n by means of the formula

‖A‖ := sup
{
‖Ax‖ : ‖x‖ ≤ 1

}
.

That is, the norm measures the maximal “elongation” of a vector x when it is
multiplied by the matrix A. Such a norm is interchangeably referred to as either
the matrix norm induced by ‖·‖ or the matrix norm subordinate to ‖·‖.

One can show that a subordinate matrix norm always has the following proper-
ties:

(1) We always have ‖Id‖ = 1.
(2) A subordinate matrix norm is always sub-multiplicative.
(3) If A is invertible, then ‖A‖‖A−1‖ ≥ 1.
(4) For every A ∈ Rn×n and x ∈ Rn we have the inequality

‖Ax‖ ≤ ‖A‖‖x‖.

Even more, one can write ‖A‖ as

‖A‖ = inf
{
C > 0 : ‖Ax‖ ≤ C‖x‖ for all x ∈ Rn

}
.

Put differently, ‖A‖ is the minimal Lipschitz constant of the linear mapping
A : Rn → Rn.

Finally, we will shortly discuss the most important subordinate matrix norms:

• The 1-norm is induced by the 1-norm on Rn, defined by

‖x‖1 :=

n∑
i=1

|xi|.

The induced matrix norm has the form

‖A‖1 = max
1≤j≤n

n∑
i=1

|aij |.

• The ∞-norm is induced by the ∞-norm on Rn, defined by

‖x‖∞ := max
1≤i≤n

|xi|.

The induced matrix norm has the form

‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij |.

• The 2-norm or spectral norm is induced by the Euclidean norm on Rn,
defined by

‖x‖2 :=
( n∑
i=1

|aij |2
)1/2

.

For the definition of the induced matrix norm, we have to recall that the
singular values of a matrix A ∈ Rn×n are precisely the square roots of
the eigenvalues of the (symmetric and positive semi-definite) matrix ATA.
That is, σ ≥ 0 is a singular value of A, if and only if σ2 is an eigenvalue of
ATA. One then has

‖A‖2 = max
{
σ ≥ 0 : σ is a singular value of A

}
.
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Remark 1. Another quite common matrix norm is the Frobenius norm

‖A‖F :=
( n∑
i,j=1

|aij |2
)1/2

.

One can show that this is indeed a matrix norm (that is, it is sub-multiplicative),
but it is not induced by any norm on Rn unless n = 1. This can be easily seen by
the fact that ‖Id‖F =

√
n, which is different from 1 for n > 1.

3. Main Theorems

Recall that a fixed point of a mapping Φ: Rn → Rn is a solution of the equation

Φ(x) = x.

In other words, if we apply the mapping Φ to a fixed point, then we will obtain as
a result the same point.

Theorem 2 (Banach’s fixed-point theorem). Assume that K ⊂ Rn is closed and
that Φ: K → K is a contraction. That is, there exists 0 ≤ C < 1 such that

‖Φ(x)− Φ(y)‖ ≤ C‖x− y‖

for all x, y ∈ K, where ‖·‖ is any norm on Rn. Then the function Φ has a unique
fixed point x̂ ∈ K.

Now let x(0) ∈ K be arbitrary and define the sequence (x(k))k∈N ⊂ K by x(k+1) :=
Φ(x(k)). Then we have the estimates

‖x(k+1) − x̂‖ ≤ C‖x(k) − x̂‖,

‖x(k) − x̂‖ ≤ Ck

1− C
‖x(1) − x(0)‖,

‖x(k) − x̂‖ ≤ C

1− C
‖x(k) − x(k−1)‖.

In particular, the seqeuence (x(k))k∈N converges to x̂.

Proof. Assume that x̂, ŷ are two fixed points of Φ in K. Then

‖x̂− ŷ‖ = ‖Φ(x̂)− Φ(ŷ)‖ ≤ C‖x̂− ŷ‖.

Wegen 0 ≤ C < 1, it follows that x̂ = ŷ. Thus the fixed point (if it exists) is unique.
Let now x(0) ∈ K be arbitrary and define inductively x(k+1) = Φ(x(k)). Then

we have for all k ∈ N and m ∈ N the estimate

(2)

‖x(k+m) − x(k)‖ ≤
m∑
j=1

‖x(k+j) − x(k+j−1)‖

≤
m∑
j=1

Cj−1‖x(k+1) − x(k)‖

≤
∞∑
j=1

Cj−1‖x(k+1) − x(k)‖

=
1

1− C
‖x(k+1) − x(k)‖

≤ C

1− C
‖x(k) − x(k−1)‖

≤ Ck

1− C
‖x(1) − x(0)‖.
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This shows that the sequence {x(k)}k∈N is a Cauchy–sequence and thus has a limit
x̂ ∈ Rn. Since the set K is closed, we further obtain that x̂ ∈ K. Now note that
the mapping Φ is by definition Lipschitz–continuous with Lipschitz–constant C. In
particular, this shows that Φ is continuous. Thus

x̂ = lim
k→∞

x(k) = lim
k→∞

x(k+1) = lim
k→∞

Φ(x(k)) = Φ
(

lim
k→∞

x(k)
)

= Φ(x̂),

which shows that x̂ is a fixed point of Φ. The different estimates claimed in the
theorem now follow easily from the fact that Φ is a contraction and from (2) by
considering the limit m → ∞ (note that the norm is a continuous mapping, and
thus the left hand side in said equation tends to ‖x̂− x(k)‖). �

Theorem 3. Assume that Φ: Rn → Rn is continuously differentiable in a neighbor-
hood of a fixed point x̂ of Φ and that there exists a norm ‖·‖ on Rn with subordinate
matrix norm ‖·‖ on Rn×n such that

‖DΦ(x̂)‖ < 1.

Then there exists a closed neighborhood K of x̂ such that Φ is a contraction on K.
In particular, the fixed point iteration x(k+1) = Φ(x(k)) converges for every x(0) ∈

K to x̂.

Proof. Because of the continuous differentiability of Φ there exist ρ > 0 and a
constant 0 < C < 1 such that

‖DΦ(x)‖ ≤ C for all x ∈ Bρ(x̂) :=
{
y ∈ Rn : ‖y − x̂‖ ≤ ρ

}
.

Let now x, y ∈ Bρ(x̂). Then

Φ(y)− Φ(x) =

∫ 1

0

DΦ
(
x+ t(y − x)

)
(y − x) dt.

Thus

‖Φ(y)− Φ(x)‖ ≤
∫ 1

0

‖DΦ
(
x+ t(y − x)

)
(y − x)‖ dt

≤
∫ 1

0

‖DΦ
(
x+ t(y − x)

)
‖‖y − x‖ dt

≤ C‖y − x‖.
In particular, we obtain with y = x̂ the inequality

‖x̂− Φ(x)‖ = ‖Φ(x̂)− Φ(x)‖ ≤ C‖x̂− x‖ ≤ Cρ < ρ.

Thus whenever x ∈ Bρ(x̂) we also have Φ(x) ∈ Bρ(x̂). This shows that, indeed, Φ
is a contraction on Bρ(x̂). Application of Banach’s fixed point theorem yields the
final claim of the theorem. �

Remark 4. Assume that A ∈ Rn×n and define the spectral radius1 of A by

ρ(A) := max
{
|λ| : λ ∈ C is an eigenvalue of A

}
.

That is, ρ(A) is (the absolute value of) the largest eigenvalue of A. Then every
subordinate matrix norm on Rn×n satisfies the inequality

ρ(A) ≤ ‖A‖.
In case a largest eigenvalue is real, this easily follows from the fact that, whenever
λ is an eigenvalue with eigenvector x, we have

|λ|‖x‖ = ‖λx‖ = ‖Ax‖ ≤ ‖A‖‖x‖.
Division by ‖x‖ yields the desired estimate.

1This is usually different from the spectral norm of A.



FIXED POINT ITERATIONS 5

Conversely, it is also possible to show that for every ε > 0 there exists a norm
‖·‖ε on Rn such that the induced matrix norm ‖·‖ε on Rn×n satisfies

‖A‖ε ≤ ρ(A) + ε

(this is a rather tedious construction involving real versions of the Jordan normal
form of A).

Together, these results imply that there exists a subordinate matrix norm ‖·‖ on
Rn×n such that ‖A‖ < 1, if and only if ρ(A) < 1. Thus, the main condition of the
previous theorem could also be equivalently reformulated as

ρ
(
DΦ(x̂)

)
< 1.

4. Consequences for the Solution of Equations

Assume for simplicity that n = 1. That is, we are only trying to solve a single
equation in one variable. The fixed point function will then have the form

Φ(x) = x+ g(x)f(x),

and g should be different from zero everywhere—or at least near the sought for
solution.

Assume now that f(x̂) = 0. Then Theorem 3 states that fixed point iteration
will converge to x̂ for all starting values x(0) sufficiently close to x̂, if |Φ′(x̂)| < 1
(note that on R there is only a single norm satisfying |1| = 1). Now, if f and g are
sufficiently smooth, then the equation f(x̂) = 0 implies that

Φ′(x̂) = 1 + g′(x̂)f(x̂) + g(x̂)f ′(x̂) = 1 + g(x̂)f ′(x̂).

In particular, |Φ′(x̂)| < 1, if and only if the following conditions hold:

(1) f ′(x̂) 6= 0.
(2) sgn(g(x̂)) = − sgn(f ′(x̂)).
(3) |g(x̂)| < 2/|f ′(x̂)|.

This provides sufficient conditions for the convergence of the above fixed point
iteration in one dimension.

In case of higher dimensions with fixed point function

Φ(x) = x+G(x)F (x)

with G : Rn → Rn×n, we similarly obtain (though with more complicated calcula-
tions)

DΦ(x̂) = Id +G(x̂) ·DF (x̂).

Consequently, said fixed point iteration will converge locally, if the matrix DF (x̂)
is invertible and the matrix G(x̂) is sufficiently close to −DF (x̂)−1.

5. The Theorey Behind Newton’s Method

Newton’s method (in one dimension) has the form of the fixed point iteration

x(k+1) := Φ(x(k)) := x(k) − f(x(k))

f ′(x(k))
.

It is therefore of the form discussed above with

g(x) := − 1

f ′(x)
.

In particular, this shows that it converges locally to a solution x̂ of the equation
f(x) = 0 provided that f ′(x̂) 6= 0. When actually performing the iterations, how-
ever, it turns out that the method works too well: While Banach’s fixed point
theorem predicts a linear convergence of the iterates to the limit x̂, the actual
convergence of the iterates is much faster.
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Definition 5. We say that a sequence (x(k))k∈N ⊂ Rn converges to x̂ with conver-
gence order (or: convergence speed) p ≥ 1, if x(k) → x̂ and there exists 0 < C < +∞
(0 < C < 1 in case p = 1) such that

‖x(k+1) − x̂‖ ≤ C‖x(k) − x̂‖p.

In the particular case of p = 1 we speak of linear convergence. The rough
interpretation is that in each step the number of “correct digits” increases by a
constant number.

For p = 2 we speak of quadratic convergence. Here the number of “correct digits”
roughly doubles in each step of the iteration.

In general, numerical methods with higher order are (all else being equal) prefer-
able to methods with lower order, if one aims for (reasonably) high accuracy.

Theorem 6. Assume that Φ: R → R is p-times continuously differentiable with
p ≥ 2 in a neighborhood of a fixed point x̂ of Φ. Assume moreover that

0 = Φ′(x̂) = Φ′′(x̂) = . . . = Φ(p−1)(x̂).

Then the fixed point sequence x(k+1) = Φ(x(k)) converges to x̂ with order (at least)
p, provided that the starting point x(0) is sufficiently close to x̂.

Proof. First note that Theorem 3 shows that the fixed point sequence indeed con-
verges to x̂ for suitable starting points x(0).

A Taylor expansion of Φ at the fixed point x̂ now shows that

x(k+1) − x̂ = Φ(x(k))− Φ(x̂) =

p−1∑
s=1

Φ(s)(x̂)

s!
(x(k) − x̂)s +

Φ(p)(ξ)

p!
(x(k) − x̂)p

for some ξ between x̂ and x(k). Since Φ(s)(x̂) = 0 for 0 ≤ s ≤ p − 1, this further
implies that

|x(k+1) − x(k)| = |Φ
(p)(ξ)|
p!

|x(k) − x̂|p.

Because Φ(p) is continuous, there exists C > 0 such that

|Φ(p)(ξ)|
p!

≤ C

for ξ sufficiently close to x̂. Thus

|x(k+1) − x(k)| ≤ C|x(k) − x̂|p,

and therefore the convergence order of the sequence (x(k))k∈N is (at least) p. �

Remark 7. It is possible to show conversely that the convergence order is precisely
p, if in addition to the conditions of Theorem 6 the function Φ is (p + 1)-times
differentiable near x̂ and Φ(p)(x̂) 6= 0.

Corollary 8. Newton’s method converges at least quadratically provided that f ′(x̂) 6=
0 and f is twice differentiable.

Remark 9. In higher dimensions, Newton’s method is defined by the iteration

x(k+1) = x(k) + h(k),

where h(k) solves the linear system

DF (x(k))h = −F (x(k)).

Equivalently,

x(k+1) = x(k) −DF (x(k))−1F (x(k)).
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Similarly as in the one-dimensional case, one can show that this method con-
verges (at least) quadratically, provided that F is twice differentiable and DF (x̂)
is an invertible matrix.
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