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The main aim of this little note is to give a treatment of rotations different from that given
in chapter 10 of Gerard A. Venema: Foundations of Geometry, second edition (which I will
simply refer to as “the book” from now on). I also append a short section treating translations
and glide reflections similarly. Here, the deviation from the book is much less dramatic, how-
ever. Our setting is that of Chapter 10 of the book, on transformations. Any references such
as to Lemma 10.1.10 are to the book; references within this note are just a single number.

We start with a simple lemma that may be seen as a precursor to Lemma 10.1.10. We leave its
simple proof to the reader:

Lemma 1. Any isometry that fixes two distinct points A and B is either the identity or the
reflection through the line

←→
AB.

Definition 2. A rotation is an isometry with exactly one fixed point. A rotation about O is a
rotation that fixes O.

Some comments: The book defines rotations differently, by a specific construction. We shall
see that, in the end, our definition departs from the book’s definition in two respects: First,
the book considers the identity to be a rotation (generated by the collapsed angle ∠AOB,

where
−→
OA = −→

OB), while we don’t. Second, the book gives a special name half-turn to a 180◦

rotation, probably because the construction of rotations does not accomodate half-turns, as
180◦ angles don’t exist in the book’s universe.

Be that as it may, our first result is our version of part 2 of Theorem 10.2.5.

Theorem 3. Let R be a rotation about O. If n is any line through O (i.e., O ∈ n), then there exist
lines s and t so that R = ρs ◦ρn = ρn ◦ρt . Conversely, if s and n are distinct lines through O,
then ρs ◦ρn is a rotation about O.

Proof. Pick a point P ∈ n, P 6=O, and let P ′ = R(P ). Then by assumption (R has no fixed points
other than O), P ′ 6= P . Let s be the perpendicular bisector of PP′. Then ρs ◦R(P ) = ρs(P ′) = P ,
so P is a fixed point of ρs ◦R. We also find OP ′ = R(O)R(P ) = OP , so that O ∈ s, and hence

O is another fixed point of ρs ◦R. Since n = ←→
OP, Lemma 1 implies that either ρs ◦R = ι or

ρs ◦R = ρn . Composing with ρs on the left, we conclude that either R = ρs or R = ρs ◦ρn . But
the former contradicts the assumption because ρs has many fixed points, not just one. So
R = ρs ◦ρn .

We pause to note that this implies that R is invertible, since reflections are invertible, and
any composition of invertible transformations is invertible.

Furthermore, R−1 is also a rotation about O, and so by the first part of the proof there
exists a line t though O so that R−1 = ρt ◦ρn . Taking inverses, noting that any reflection is its
own inverse, we conclude that R = ρn ◦ρt .



For the converse, take distinct lines s and n through O, and let R = ρs ◦ρn . Clearly, O is a
fixed point of R. Assume P is a fixed point of R, i.e., ρs

(
ρn(P )

)= P . Applying ρs on both sides,
we conclude ρn(P ) = ρs(P ). Put Q = ρn(P ). If Q 6= P then n is the perpendicular bisector
of PQ, and so is s (since ρs(P ) = Q). But n and s were assumed to be different lines, so this
is a contradiction, and we must have Q = P . But then P = Q = ρn(P ) implies P ∈ n, and
P =Q = ρs(P ) imples P ∈ s, so we must have P = O. In other words, O is the only fixed point
of R, so R is a rotation about O.

We leave it as an exercise for the reader to verify that the rotation R satisfies P ∗ O ∗ P ′

for at least one P 6=O, and equivalently for all P 6=O, if and only if n ⊥ t . This is the half-turn
case.

Next, we tackle Lemma 10.3.3, but we tack on an important corollary.

Lemma 4. If `, m, and n are three lines (distinct or not) through a common point O, there
exists a line s through O such that ρ` ◦ρm ◦ρn = ρs . In particular, ρ` ◦ρm ◦ρn = ρn ◦ρm ◦ρ`.

Proof. If `= m, there is nothing to prove; just take s = n. Otherwise, ρ` ◦ρm is a rotation, and
hence Theorem 3 implies the existence of a line s so that ρ` ◦ρm = ρn ◦ρs . Composing with
ρs on the right, we get ρ` ◦ρm ◦ρn = ρs , as claimed.

Now observe that ρs is its own inverse, and hence ρ` ◦ρm ◦ρn is its own inverse. But that
inverse is ρn ◦ρm ◦ρ`, and so the final equality is established.

We immediately conclude that any two rotations about O commute:

Corollary 5. If R and S are two rotations about O, then R ◦S = S ◦R.

Proof. Write R = ρ` ◦ρm and S = ρn ◦ρt . Then

R ◦S =
A︷ ︸︸ ︷

ρ` ◦ρm ◦ρn ◦ρt =
A︷ ︸︸ ︷

ρn ◦ρm ◦ρ` ◦ρt︸ ︷︷ ︸
B

= ρn ◦ρt ◦ρ` ◦ρm︸ ︷︷ ︸
B

= S ◦R,

where we used the final formula from Lemma 4 on the subexpressions marked A and B.

We can now state and prove our version of part 1 of Theorem 10.2.5.

Theorem 6. Let R be a rotation about O, and P 6= O, Q 6= O. Write P ′ = R(P ) and Q ′ = R(Q).
Then either both P ∗O ∗P ′ and Q ∗O ∗Q ′ hold, or neither holds. In the latter case, ∠POP′ ∼=
∠QOQ′.

Proof. First, if Q ∈ ←→
OP, the result is immediate. So we assume otherwise. Second, we can,

without loss of generality, move Q along the ray
−−→
OQ to make OQ =OP .

Then we can find a second rotation S so that S(P ) =Q: Simply let m be the perpendicular

bisector of PQ, and note that O ∈ m. Further, let n = ←→
OP, and let S = ρm ◦ρn . Then S(P ) =

ρm(ρn(P )) = ρm(P ) =Q, as claimed.
Thanks to Corollary 5, we also get S(P ′) = S

(
R(P )

)= R
(
S(P )

)= R(Q) =Q ′.
From the three equations S(O) = O, S(P ) = Q, and S(P ′) = Q ′, plus the fact that S is an

isometry and hence preserves colinearity, the relation ·∗·∗·, and angles, the conclusion read-
ily follows.
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Translations and glide reflections

Definition 7. An isometry which has an invariant line but no fixed point, is called a transla-
tion if it maps each half plane determined by that line into itself. It is called a glide reflection
if each half plane is mapped into the opposite half plane.

In more detail, we are looking at an isometry T and a line k so that T (P ) ∈ k for every
P ∈ k. Further, if the two half planes determined by k are H1 and H2, then T is a translation if
T (P ) ∈ H1 for each P ∈ H1, and T (P ) ∈ H2 for each P ∈ H21. In contrast, T is a glide reflection
if T (P ) ∈ H2 for each P ∈ H1, and T (P ) ∈ H1 for each P ∈ H2.

It is not too hard to show that any isometry with an invariant line byt no fixed point must
be either a translation or a glide reflection.

Here is our version of the Translation Theorem:

Theorem 8. If T is a translation with invariant line k, and `⊥ k, there exists a line m ⊥ k so
that so that T = ρm ◦ρ`. Also, for any line m ⊥ k one can choose ` so that this formula holds.

Conversely, ρm ◦ρ` is a translation with invariant line k for any pair of distinct lines `⊥ k
and m ⊥ k.

Proof. Let T , k, and ` be as stated. Let P be the common point of k and `, put P ′ = T (P ),
and let m be the perpendicular bisector of PP′. Then ρm

(
T (P )

)= ρm(P ′) = P . So ρm ◦T is an
isometry with a fixed point at P . It also has k as an invariant line. Further, any Q ∈ ` is a fixed
point of ρm ◦T : For if R = ρm

(
T (Q)

)
then

←→
RP ⊥ k since ρ◦T preserves angles and has the fixed

point P (and leaves ` invariant). Thus R ∈ `. But also Q, T (Q), and R all lie on the same side
of k: The first two because T is a translation, and the latter two because ρm maps each side of
` into itself. We conclude that Lemma 1 that either ρm ◦T = ι or ρm ◦T = ρ`. So either T = ρm

or T = ρm ◦ρ`. The former possibility contradicts the assumption that T has no fixed points,
so the latter option is the only choice.

To see that we could have chosen the line m freely, rather than m, apply the previous
result to T −1.

Next, we handle the final part. It is clear that ρ` and ρm individually have invariant line k
and map each side of k into itself. If ρm ◦ρl has a fixed point P , then ρ`(P ) = ρm(P ). Name
this common value P ′, and let M be the midpoint of PP′. Thus ρ`(P ) = P ′ and ρ`(P ′) = P ,
and it follows that ρ`(M) = M . Therefore, M ∈ `. But M ∈ m for the same reason. This is
impossible, for ` ∥ m since the two lines have a common perpendicular.

Theorem 9. If S is a glide reflection with invariant line k, then S = ρk ◦T for a translation T .
Conversely, this formula defines a glide reflection.

Proof. The only non-trivial part is to show that if S is a glide reflection with invariant line k
and we define T = ρk ◦S, then T is a translation. And the only non-trivial part of that is to
show it has no fixed points. If P is such a fixed point, then S(P ) = ρk (P ). Write P ′ = ρk (P ) =
S(P ), and write P ′′ = S(P ′). Note that P ′ ∉ k, for otherwise, S(P ) = ρk (P ) = P , but S has no

fixed points. Then since
←→
PP′ ⊥ k and S preserves angles, we have

←−→
P′P′′ ⊥ k also. Since these

two lines have the point P ′ in common and both are perpendicular to k, they must be the

same line. In particular, the intersection point of k and
←→
PP′ will be a fixed point of S. But that

does not exist by assumption, and this completes the proof.
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Final remarks: The following remarks could easily be made into formal statements, but this
is perhaps better left to the reader.

First, notice that when `⊥ k then ρ` ◦ρk = ρk ◦ρ`. So combining Theorems 8 and 9, we
conclude that a glide reflectin can be written

S = ρk ◦ρm ◦ρ` = ρm ◦ρk ◦ρ` = ρm ◦ρ` ◦ρk

where `⊥ k and m ⊥ k, with either ` or m freely chosen.
Further, we can mimic the proof of Lemma 4 and Corollary ?? to find any two translations,

or glide reflections, or one of each, with invariant line commute.
Then we could mimic the proof of Theorem 6 to show that any translation or glide re-

flection, when restricted to the invariant line k, simply moves points along the line by some
fixed distance. But this is much more easily proved by employing the ruler axiom and noting
that any f : R→ R satisfying | f (x)− f (y)| = |x − y | and having no fixed points has the form
f (x) = x +a for some constant a 6= 0.

It is quite obvious that a glide reflection has only one invariant line. For a translation
in Euclidean geometry however, all lines parallel to a given invariant line will themselves be
invariant. In hyperbolic geometry, on the other hand, a translation has only one invariant
line. (This could be a good exercise.)
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