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The aim of this little note is to give a treatment of rotations different from that given in chapter
10 of Gerard A. Venema: Foundations of Geometry, second edition (which I will simply refer to
as “the book” from now on). Our setting is that of Chapter 10 of the book, on transformations.
Any references such as to Lemma 10.1.10 are to the book; references within this note are just
a single number.

We start with a simple lemma that may be seen as a precursor to Lemma 10.1.10. We leave its
simple proof to the reader:

Lemma 1. Any isometry that fixes two distinct points A and B is either the identity or the
reflection through the line

←→
AB.

Definition 2. A rotation is an isometry with exactly one fixed point. A rotation about O is a
rotation that fixes O.

Some comments: The book defines rotations differently, by a specific construction. We shall
see that, in the end, our definition departs from the book’s definition in two respects: First,
the book considers the identity to be a rotation (generated by the collapsed angle ∠AOB,

where
−→
OA = −→

OB), while we don’t. Second, the book gives a special name half-turn to a 180◦

rotation, probably because the construction of rotations does not accomodate half-turns, as
180◦ angles don’t exist in the book’s universe.

Be that as it may, our first result is our version of part 2 of Theorem 10.2.5.

Theorem 3. Let R be a rotation about O. If n is any line through O (i.e., O ∈ n), then there exist
lines s and t so that R = ρs ◦ρn = ρn ◦ρt . Conversely, if s and n are distinct lines through O,
then ρs ◦ρn is a rotation about O.

Proof. Pick a point P ∈ n, P 6=O, and let P ′ = R(P ). Then by assumption (R has no fixed points
other than O), P ′ 6= P . Let s be the perpendicular bisector of PP′. Then ρs ◦R(P ) = ρs(P ′) = P ,
so P is a fixed point of ρs ◦R. We also find OP ′ = R(O)R(P ) = OP , so that O ∈ s, and hence

O is another fixed point of ρs ◦R. Since n = ←→
OP, Lemma 1 implies that either ρs ◦R = ι or

ρs ◦R = ρn . Composing with ρs on the left, we conclude that either R = ρs or R = ρs ◦ρn . But
the former contradicts the assumption because ρs has many fixed points, not just one. So
R = ρs ◦ρn .

We pause to note that this implies that R is invertible, since reflections are invertible, and
any composition of invertible transformations is invertible.

Furthermore, R−1 is also a rotation about O, and so by the first part of the proof there
exists a line t though O so that R−1 = ρt ◦ρn . Taking inverses, noting that any reflection is its
own inverse, we conclude that R = ρn ◦ρt .



For the converse, take distinct lines s and n through O, and let R = ρs ◦ρn . Clearly, O is a
fixed point of R. Assume P is a fixed point of R, i.e., ρs

(
ρn(P )

)= P . Applying ρs on both sides,
we conclude ρn(P ) = ρs(P ). Put Q = ρn(P ). If Q 6= P then n is the perpendicular bisector
of PQ, and so is s (since ρs(P ) = Q). But n and s were assumed to be different lines, so this
is a contradiction, and we must have Q = P . But then P = Q = ρn(P ) implies P ∈ n, and
P =Q = ρs(P ) imples P ∈ s, so we must have P = O. In other words, O is the only fixed point
of R, so R is a rotation about O.

We leave it as an exercise for the reader to verify that the rotation R satisfies P ∗ O ∗ P ′

for at least one P 6=O, and equivalently for all P 6=O, if and only if n ⊥ t . This is the half-turn
case.

Next, we tackle Lemma 10.3.3, but we tack on an important corollary.

Lemma 4. If `, m, and n are three lines (distinct or not) through a common point O, there
exists a line s through O such that ρ` ◦ρm ◦ρn = ρs . In particular, ρ` ◦ρm ◦ρn = ρn ◦ρm ◦ρ`.

Proof. If `= m, there is nothing to prove; just take s = n. Otherwise, ρ` ◦ρm is a rotation, and
hence Theorem 3 implies the existence of a line s so that ρ` ◦ρm = ρn ◦ρs . Composing with
ρs on the right, we get ρ` ◦ρm ◦ρn = ρs , as claimed.

Now observe that ρs is its own inverse, and hence ρ` ◦ρm ◦ρn is its own inverse. But that
inverse is ρn ◦ρm ◦ρ`, and so the final equality is established.

We immediately conclude that any two rotations about O commute:

Corollary 5. If R and S are two rotations about O, then R ◦S = S ◦R.

Proof. Write R = ρ` ◦ρm and S = ρn ◦ρt . Then

R ◦S =
A︷ ︸︸ ︷

ρ` ◦ρm ◦ρn ◦ρt =
A︷ ︸︸ ︷

ρn ◦ρm ◦ρ` ◦ρt︸ ︷︷ ︸
B

= ρn ◦ρt ◦ρ` ◦ρm︸ ︷︷ ︸
B

= S ◦R,

where we used the final formula from Lemma 4 on the subexpressions marked A and B.

We can now state and prove our version of part 1 of Theorem 10.2.5.

Theorem 6. Let R be a rotation about O, and P 6= O, Q 6= O. Write P ′ = R(P ) and Q ′ = R(Q).
Then either both P ∗O ∗P ′ and Q ∗O ∗Q ′ hold, or neither holds. In the latter case, ∠POP′ ∼=
∠QOQ′.

Proof. First, if Q ∈ ←→
OP, the result is immediate. So we assume otherwise. Second, we can,

without loss of generality, move Q along the ray
−−→
OQ to make OQ =OP .

Then we can find a second rotation S so that S(P ) =Q: Simply let m be the perpendicular

bisector of PQ, and note that O ∈ m. Further, let n = ←→
OP, and let S = ρm ◦ρn . Then S(P ) =

ρm(ρn(P )) = ρm(P ) =Q, as claimed.
Thanks to Corollary 5, we also get S(P ′) = S

(
R(P )

)= R
(
S(P )

)= R(Q) =Q ′.
From the three equations S(O) = O, S(P ) = Q, and S(P ′) = Q ′, plus the fact that S is an

isometry and hence preserves colinearity, the relation ·∗·∗·, and angles, the conclusion read-
ily follows.


