The definition of a vector space $(V, +, \cdot)$

- 1. For any \vec{u} and \vec{v} in V, $\vec{u} + \vec{v}$ is also in V.
- 2. For any \vec{u} and \vec{v} in V, $\vec{u} + \vec{v} = \vec{v} + \vec{u}$.
- 3. For any \vec{u} , \vec{v} , \vec{w} in V, $\vec{u} + (\vec{v} + \vec{w}) = (\vec{u} + \vec{v}) + \vec{w}$.
- 4. There is an element in V called the zero or null vector, which we denote by $\vec{0}$, such that for all \vec{u} in V we have $\vec{0} + \vec{u} = \vec{u}$.
- 5. For every \vec{u} in V, there is a vector called the *negative* of \vec{u} and denoted $-\vec{u}$, such that $-\vec{u} + \vec{u} = \vec{0}$.
- 6. If k is any scalar in \mathbb{R} and \vec{u} is any vector in V, then $k \cdot \vec{u}$ is a vector in V.
- 7. For any scalar k in \mathbb{R} and any vectors \vec{u} and \vec{v} in V, $k \cdot (\vec{u} + \vec{v}) = k \cdot \vec{u} + k \cdot \vec{v}$.
- 8. For any scalars k and m in \mathbb{R} and any vector \vec{u} in V, $(k+m) \cdot \vec{u} = k \cdot \vec{u} + m \cdot \vec{u}.$
- 9. For any scalars k and m in \mathbb{R} and any vector \vec{u} in V, $k \cdot (m \cdot \vec{u}) = (k m) \cdot \vec{u}$.

10. For any vector \vec{u} in V, $1 \cdot \vec{u} = \vec{u}$.

What determines a vector space?

- A nonempty set V whose elements are called vectors.
- An operation + called vectors addition, such that

```
vector + vector = vector
```

In other words, we have *closure* under vector addition.

An operation · called scalar multiplication, such that

```
scalar \cdot vector = vector
```

In other words, we have *closure* under scalar multiplication.

• The remaining 8 axioms are all satisfied.

<u>Theorem</u>: Let V be a vector space. The following statements are always true.

a)
$$0 \cdot \vec{u} = \vec{0}$$

b) $k \cdot \vec{0} = \vec{0}$
c) $(-1) \cdot \vec{u} = -\vec{u}$
d) If $k \cdot \vec{u} = \vec{0}$ then $k = 0$ or $\vec{u} = \vec{0}$.

Vector subspace

Let $(V, +, \cdot)$ be a vector space.

<u>Definition</u>: A subset W of V is called a *subspace* if W is itself a vector space with the operations + and \cdot defined on V.

<u>Theorem</u>: Let W be a nonempty subset of V. Then W is a subspace of V if and only if it is *closed* under addition and scalar multiplication, in other words, if:

- i.) For any \vec{u}, \vec{v} in W, we have $\vec{u} + \vec{v}$ is in W.
- ii.) For any scalar k and any vector \vec{u} in W we have $k \cdot \vec{u}$ is in W.

Linear combinations and the span of a set of vectors Let $(V, +, \cdot)$ be a vector space.

<u>Definition</u>: Let \vec{v} be a vector in V. We say that \vec{v} is a *linear* combination of the vectors $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_r}$ if there are scalars k_1, k_2, \ldots, k_r such that

$$\vec{v} = k_1 \cdot \vec{v_1} + k_2 \cdot \vec{v_2} + \ldots + k_r \cdot \vec{v_r}$$

The scalars k_1, k_2, \ldots, k_r are called the *coefficients* of the linear combination.

<u>Definition</u>: Let $S = \{\vec{v_1}, \vec{v_2}, \dots, \vec{v_r}\}$ be a set of vectors in V. Let W be the set of all linear combinations of $\vec{v_1}, \vec{v_2}, \dots, \vec{v_r}$:

 $W = \{k_1 \cdot \vec{v_1} + k_2 \cdot \vec{v_2} + \ldots + k_r \cdot \vec{v_r} : \text{ for all choices of scalars } k_1, k_2, \ldots, k_r\}$

Then W is called the *span* of the set S. We write:

$$W = \text{ span } S$$
 or $W = \text{ span } \{ \vec{v_1}, \vec{v_2}, \dots, \vec{v_r} \}$

Linear combinations and the span of a set of vectors

Let $(V, +, \cdot)$ be a vector space and let $S = \{\vec{v_1}, \vec{v_2}, \dots, \vec{v_r}\}$ be a set of vectors in V.

span $S = \{k_1 \cdot \vec{v_1} + k_2 \cdot \vec{v_2} + ... + k_r \cdot \vec{v_r} : \text{ for all scalars } k_1, k_2, ..., k_r\}$

(all linear combinations of $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_r}$).

<u>Theorem</u>: span $\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_r}\}$ is a subspace of V. It is in fact the *smallest* subspace of V that contains all vectors $\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_r}\}$. Linear independence in a vector space V

Let V be a vector space and let $S = \{\vec{v_1}, \vec{v_2}, \dots, \vec{v_r}\}$ be a set of vectors in V.

<u>Definition</u>: The set S is called *linearly independent* if the vector equation

(*)
$$c_1 \cdot \vec{v_1} + c_2 \cdot \vec{v_2} + \ldots + c_r \cdot \vec{v_r} = \vec{0}$$

has only one solution, the trivial one:

$$c_1 = 0, \ c_2 = 0, \ \dots, c_r = 0$$

The set is called linearly dependent otherwise, if equation (*) has other solutions besides the trivial one.

<u>Theorem</u>: The set of vectors S is linearly independent if and only if no vector in the set is a linear combination of the other vectors in the set.

The set of vectors S is linearly dependent if and only if one of the vectors in the set is a linear combination of the other vectors in the set.

The solutions to a homogeneous system of equations $A \cdot \vec{x} = \vec{0}$

Consider a *homogeneous* system of m equations with n unknowns.

In other words,

- let A be an $m \times n$ matrix
- let x be an n × 1 matrix (or vector) whose entries are the unknowns x₁, x₂,..., x_n
- let $\vec{0}$ denote the $n \times 1$ matrix (vector) whose entries are all 0.

The system can then be written as

$$A \cdot \vec{x} = \vec{0}$$

<u>Theorem</u>: The set of solutions to a *homogeneous* system of *m* equations with *n* unknowns is a subspace of \mathbb{R}^n .

Reminder from MA1201 on systems of equations

The case when | # of equations = # of unknowns

<u>Theorem</u>: Let A be a square matrix in \mathbf{M}_{nn} . The following statements are equivalent:

- 1. A is invertible
- 2. det(A) $\neq 0$
- 3. The homogeneous system $A \cdot \vec{x} = \vec{0}$ has only the trivial solution
- 4. The system of equations $A \cdot \vec{x} = \vec{b}$ has exactly one solution for every vector \vec{b} in \mathbb{R}^n .

The case when
$$\#$$
 of unknowns $> \#$ of equations

<u>Theorem</u>: Let A be a matrix in \mathbf{M}_{mn} , where n > m. Then the homogeneous system $A \cdot \vec{x} = \vec{0}$ has infinitely many solutions.

Basis in a vector space V

<u>Definition</u>: A set $S = \{\vec{v_1}, \vec{v_2}, \dots, \vec{v_r}\}$ of vectors is called a *basis* for *V* if

- 1. S is linearly independent
- 2. span (S) = V.

In other words, the set $S = \{ ec{v_1}, ec{v_2}, \dots, ec{v_r} \}$ is a basis for V if

- 1. The equation $c_1 \cdot \vec{v_1} + c_2 \cdot \vec{v_2} + \ldots + c_r \cdot \vec{v_r} = \vec{0}$ has only the trivial solution.
- 2. The equation $c_1 \cdot \vec{v_1} + c_2 \cdot \vec{v_2} + \ldots + c_r \cdot \vec{v_r} = \vec{b}$ has a solution for every \vec{b} in V.

Standard bases for the most popular vector spaces

- In \mathbb{R}^2 : $\{\vec{i}, \vec{j}\}$.
- In \mathbb{R}^3 : $\{\vec{i}, \vec{j}, \vec{k}\}$.
- In \mathbb{R}^n : $\{e_1, e_2, \ldots, e_n\}$.
- In \mathbf{P}_n : 1, X, X²,..., Xⁿ.
- In M₂₂: all matrices with all entries 0 except for one entry, which is 1. There are 4 such matrices.
- In \mathbf{M}_{mn} : all matrices with all entries 0 except for one entry, which is 1. There are $m \cdot n$ such matrices.

Dimension of a vector space

Some vector spaces do not have a *finite* basis. A vector space has many different bases. However,

<u>Theorem</u>: All bases of a finite dimensional vector space have the same number of elements.

<u>Definition</u>: Let V be a finite dimensional vector space. We call dimension of V is the number of elements of a basis for V. We use the notation $\dim(V)$ for the dimension of V.

Example: Counting the elements of the standard basis of each of the popular vectors spaces, we have that:

dim
$$(\mathbb{R}^n) = n$$

$$dim(\mathbf{P}_n) = n+1$$

dim
$$(\mathbf{M}_{mn} = m \cdot n)$$

Finding bases for the null space, row space and column space of a matrix

Given an $m \times n$ matrix A

- 1. Reduce the matrix A to the *reduced row echelon form* R.
- Solve the system R ⋅ x = 0. Find a basis for the solutions space. The same basis for the solution space of R ⋅ x = 0 is a basis for the null space of A.
- Consider the non-zero rows of R. They form a basis for the row space of R.
 The same basis for the row space of R is a basis for the row space of A.
- 4. Take the columns of R with leading 1s. They form a basis for the column space of R.The corresponding column vectors in A form a basis for the column space of A.