
The definition of a vector space (V ,+, ·)
1. For any ~u and ~v in V , ~u + ~v is also in V .

2. For any ~u and ~v in V , ~u + ~v = ~v + ~u.

3. For any ~u, ~v , ~w in V , ~u + (~v + ~w) = (~u + ~v) + ~w .

4. There is an element in V called the zero or null vector, which
we denote by ~0, such that for all ~u in V we have ~0 + ~u = ~u.

5. For every ~u in V , there is a vector called the negative of ~u
and denoted −~u, such that −~u + ~u = ~0.

6. If k is any scalar in R and ~u is any vector in V , then k · ~u is a
vector in V .

7. For any scalar k in R and any vectors ~u and ~v in V ,
k · (~u + ~v) = k · ~u + k · ~v .

8. For any scalars k and m in R and any vector ~u in V ,
(k + m) · ~u = k · ~u + m · ~u.

9. For any scalars k and m in R and any vector ~u in V ,
k · (m · ~u) = (k m) · ~u.

10. For any vector ~u in V , 1 · ~u = ~u.



What determines a vector space?

A nonempty set V whose elements are called vectors.

An operation + called vectors addition, such that

vector + vector = vector

In other words, we have closure under vector addition.

An operation · called scalar multiplication, such that

scalar · vector = vector

In other words, we have closure under scalar multiplication.

The remaining 8 axioms are all satisfied.



Some basic identities in a vector space

Theorem: Let V be a vector space. The following statements are
always true.

a) 0 · ~u = ~0

b) k ·~0 = ~0

c) (−1) · ~u = −~u
d) If k · ~u = ~0 then k = 0 or ~u = ~0.



Vector subspace

Let (V ,+, ·) be a vector space.

Definition: A subset W of V is called a subspace if W is itself a
vector space with the operations + and · defined on V .

Theorem: Let W be a nonempty subset of V . Then W is a
subspace of V if and only if it is closed under addition and scalar
multiplication, in other words, if:

i.) For any ~u, ~v in W , we have ~u + ~v is in W .

ii.) For any scalar k and any vector ~u in W we have k · ~u is in W .



Linear combinations and the span of a set of vectors
Let (V ,+, ·) be a vector space.

Definition: Let ~v be a vector in V . We say that ~v is a linear
combination of the vectors ~v1, ~v2, . . . , ~vr if there are scalars
k1, k2, . . . , kr such that

~v = k1 · ~v1 + k2 · ~v2 + . . . + kr · ~vr

The scalars k1, k2, . . . , kr are called the coefficients of the linear
combination.

Definition: Let S = {~v1, ~v2, . . . , ~vr} be a set of vectors in V .
Let W be the set of all linear combinations of ~v1, ~v2, . . . , ~vr :

W = {k1·~v1+k2·~v2+. . .+kr ·~vr : for all choices of scalars k1, k2, . . . , kr}

Then W is called the span of the set S .
We write:

W = span S or W = span {~v1, ~v2, . . . , ~vr}



Linear combinations and the span of a set of vectors

Let (V ,+, ·) be a vector space and let S = {~v1, ~v2, . . . , ~vr} be a
set of vectors in V .

spanS = {k1 · ~v1+k2 · ~v2+. . .+kr · ~vr : for all scalars k1, k2, . . . , kr}

(all linear combinations of ~v1, ~v2, . . . , ~vr ).

Theorem: span {~v1, ~v2, . . . , ~vr} is a subspace of V .
It is in fact the smallest subspace of V that contains all vectors
{~v1, ~v2, . . . , ~vr}.



Linear independence in a vector space V
Let V be a vector space and let S = {~v1, ~v2, . . . , ~vr} be a set of
vectors in V .

Definition: The set S is called linearly independent if the vector
equation

(∗) c1 · ~v1 + c2 · ~v2 + . . . + cr · ~vr = ~0

has only one solution, the trivial one:

c1 = 0, c2 = 0, . . . , cr = 0

The set is called linearly dependent otherwise, if equation (*) has
other solutions besides the trivial one.

Theorem: The set of vectors S is linearly independent if and only if
no vector in the set is a linear combination of the other vectors in
the set.

The set of vectors S is linearly dependent if and only if one of the
vectors in the set is a linear combination of the other vectors in the
set.



The solutions to a homogeneous system of equations

A · ~x = ~0

Consider a homogeneous system of m equations with n unknowns.

In other words,

let A be an m × n matrix

let ~x be an n × 1 matrix (or vector) whose entries are the
unknowns x1, x2, . . . , xn

let ~0 denote the n × 1 matrix (vector) whose entries are all 0.

The system can then be written as

A · ~x = ~0

Theorem: The set of solutions to a homogeneous system of m
equations with n unknowns is a subspace of Rn.



Reminder from MA1201 on systems of equations

The case when # of equations = # of unknowns

Theorem: Let A be a square matrix in Mn n.
The following statements are equivalent:

1. A is invertible

2. det(A) 6= 0

3. The homogeneous system A · ~x = ~0 has only the trivial
solution

4. The system of equations A · ~x = ~b has exactly one solution for
every vector ~b in Rn.

The case when # of unknowns > # of equations

Theorem: Let A be a matrix in Mmn, where n > m.
Then the homogeneous system A · ~x = ~0 has infinitely many
solutions.



Basis in a vector space V

Definition: A set S = {~v1, ~v2, . . . , ~vr} of vectors is called a basis
for V if

1. S is linearly independent

2. span (S) = V .

In other words, the set S = {~v1, ~v2, . . . , ~vr} is a basis for V if

1. The equation c1 · ~v1 + c2 · ~v2 + . . . + cr · ~vr = ~0 has only the
trivial solution.

2. The equation c1 · ~v1 + c2 · ~v2 + . . . + cr · ~vr = ~b has a solution
for every ~b in V .



Standard bases for the most popular vector spaces

In R2: {~i , ~j}.

In R3: {~i , ~j , ~k}.

In Rn: {e1, e2, . . . , en}.

In Pn: 1,X ,X 2, . . . ,X n.

In M2 2: all matrices with all entries 0 except for one entry,
which is 1. There are 4 such matrices.

In Mmn: all matrices with all entries 0 except for one entry,
which is 1. There are m · n such matrices.



Dimension of a vector space

Some vector spaces do not have a finite basis.
A vector space has many different bases. However,

Theorem: All bases of a finite dimensional vector space have the
same number of elements.

Definition: Let V be a finite dimensional vector space. We call
dimension of V is the number of elements of a basis for V .
We use the notation dim(V ) for the dimension of V .

Example: Counting the elements of the standard basis of each of
the popular vectors spaces, we have that:

dim(Rn) = n

dim(Pn) = n + 1

dim(Mmn = m · n



Finding bases for the null space, row space and column
space of a matrix

Given an m × n matrix A

1. Reduce the matrix A to the reduced row echelon form R.

2. Solve the system R · ~x = ~0. Find a basis for the solutions
space.
The same basis for the solution space of R · ~x = ~0 is a basis
for the null space of A.

3. Consider the non-zero rows of R. They form a basis for the
row space of R.
The same basis for the row space of R is a basis for the row
space of A.

4. Take the columns of R with leading 1s. They form a basis for
the column space of R.
The corresponding column vectors in A form a basis for the
column space of A.


