The definition of a vector space $(V,+, \cdot)$

1. For any \vec{u} and \vec{v} in $V, \vec{u}+\vec{v}$ is also in V.
2. For any \vec{u} and \vec{v} in $V, \vec{u}+\vec{v}=\vec{v}+\vec{u}$.
3. For any $\vec{u}, \vec{v}, \vec{w}$ in $V, \vec{u}+(\vec{v}+\vec{w})=(\vec{u}+\vec{v})+\vec{w}$.
4. There is an element in V called the zero or null vector, which we denote by $\overrightarrow{0}$, such that for all \vec{u} in V we have $\overrightarrow{0}+\vec{u}=\vec{u}$.
5. For every \vec{u} in V, there is a vector called the negative of \vec{u} and denoted $-\vec{u}$, such that $-\vec{u}+\vec{u}=\overrightarrow{0}$.
6. If k is any scalar in \mathbb{R} and \vec{u} is any vector in V, then $k \cdot \vec{u}$ is a vector in V.
7. For any scalar k in \mathbb{R} and any vectors \vec{u} and \vec{v} in V, $k \cdot(\vec{u}+\vec{v})=k \cdot \vec{u}+k \cdot \vec{v}$.
8. For any scalars k and m in \mathbb{R} and any vector \vec{u} in V, $(k+m) \cdot \vec{u}=k \cdot \vec{u}+m \cdot \vec{u}$.
9. For any scalars k and m in \mathbb{R} and any vector \vec{u} in V, $k \cdot(m \cdot \vec{u})=(k m) \cdot \vec{u}$.
10. For any vector \vec{u} in $V, 1 \cdot \vec{u}=\vec{u}$.

What determines a vector space?

- A nonempty set V whose elements are called vectors.

■ An operation + called vectors addition, such that

$$
\text { vector }+ \text { vector }=\text { vector }
$$

In other words, we have closure under vector addition.

- An operation • called scalar multiplication, such that

$$
\text { scalar } \cdot \text { vector }=\text { vector }
$$

In other words, we have closure under scalar multiplication.

- The remaining 8 axioms are all satisfied.

Some basic identities in a vector space

Theorem: Let V be a vector space. The following statements are always true.
a) $0 \cdot \vec{u}=\overrightarrow{0}$
b) $k \cdot \overrightarrow{0}=\overrightarrow{0}$
c) $(-1) \cdot \vec{u}=-\vec{u}$
d) If $k \cdot \vec{u}=\overrightarrow{0}$ then $k=0$ or $\vec{u}=\overrightarrow{0}$.

Vector subspace

Let $(V,+, \cdot)$ be a vector space.
Definition: A subset W of V is called a subspace if W is itself a vector space with the operations + and \cdot defined on V.

Theorem: Let W be a nonempty subset of V. Then W is a subspace of V if and only if it is closed under addition and scalar multiplication, in other words, if:
i.) For any \vec{u}, \vec{v} in W, we have $\vec{u}+\vec{v}$ is in W.
ii.) For any scalar k and any vector \vec{u} in W we have $k \cdot \vec{u}$ is in W.

Linear combinations and the span of a set of vectors

 Let $(V,+, \cdot)$ be a vector space.Definition: Let \vec{v} be a vector in V. We say that \vec{v} is a linear combination of the vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{r}}$ if there are scalars $k_{1}, k_{2}, \ldots, k_{r}$ such that

$$
\vec{v}=k_{1} \cdot \overrightarrow{v_{1}}+k_{2} \cdot \overrightarrow{v_{2}}+\ldots+k_{r} \cdot \overrightarrow{v_{r}}
$$

The scalars $k_{1}, k_{2}, \ldots, k_{r}$ are called the coefficients of the linear combination.

Definition: Let $S=\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{r}}\right\}$ be a set of vectors in V. Let W be the set of all linear combinations of $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{r}}$:
$W=\left\{k_{1} \cdot \overrightarrow{v_{1}}+k_{2} \cdot \overrightarrow{v_{2}}+\ldots+k_{r} \cdot \overrightarrow{v_{r}}\right.$: for all choices of scalars $\left.k_{1}, k_{2}, \ldots, k_{r}\right\}$
Then W is called the span of the set S.
We write:

$$
W=\operatorname{span} S \quad \text { or } \quad W=\operatorname{span}\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{r}}\right\}
$$

Linear combinations and the span of a set of vectors

Let $(V,+, \cdot)$ be a vector space and let $S=\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{r}}\right\}$ be a set of vectors in V.
$\operatorname{span} S=\left\{k_{1} \cdot \overrightarrow{v_{1}}+k_{2} \cdot \overrightarrow{v_{2}}+\ldots+k_{r} \cdot \overrightarrow{v_{r}}\right.$: for all scalars $\left.k_{1}, k_{2}, \ldots, k_{r}\right\}$ (all linear combinations of $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{r}}$).

Theorem: span $\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{r}}\right\}$ is a subspace of V.
It is in fact the smallest subspace of V that contains all vectors $\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{r}}\right\}$.

Linear independence in a vector space V

Let V be a vector space and let $S=\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{r}}\right\}$ be a set of vectors in V.

Definition: The set S is called linearly independent if the vector equation

$$
\text { (*) } c_{1} \cdot \overrightarrow{v_{1}}+c_{2} \cdot \overrightarrow{v_{2}}+\ldots+c_{r} \cdot \overrightarrow{v_{r}}=\overrightarrow{0}
$$

has only one solution, the trivial one:

$$
c_{1}=0, c_{2}=0, \ldots, c_{r}=0
$$

The set is called linearly dependent otherwise, if equation (*) has other solutions besides the trivial one.

Theorem: The set of vectors S is linearly independent if and only if no vector in the set is a linear combination of the other vectors in the set.

The set of vectors S is linearly dependent if and only if one of the vectors in the set is a linear combination of the other vectors in the set.

The solutions to a homogeneous system of equations

 $A \cdot \vec{x}=\overrightarrow{0}$Consider a homogeneous system of m equations with n unknowns. In other words,

- let A be an $m \times n$ matrix
- let \vec{x} be an $n \times 1$ matrix (or vector) whose entries are the unknowns $x_{1}, x_{2}, \ldots, x_{n}$
- let $\overrightarrow{0}$ denote the $n \times 1$ matrix (vector) whose entries are all 0 .

The system can then be written as

$$
A \cdot \vec{x}=\overrightarrow{0}
$$

Theorem: The set of solutions to a homogeneous system of m equations with n unknowns is a subspace of \mathbb{R}^{n}.

Reminder from MA1201 on systems of equations

The case when $\#$ of equations $=\#$ of unknowns
Theorem: Let A be a square matrix in $\mathbf{M}_{n n}$.
The following statements are equivalent:

1. A is invertible
2. $\operatorname{det}(A) \neq 0$
3. The homogeneous system $A \cdot \vec{x}=\overrightarrow{0}$ has only the trivial solution
4. The system of equations $A \cdot \vec{x}=\vec{b}$ has exactly one solution for every vector \vec{b} in \mathbb{R}^{n}.

The case when \# of unknowns $>$ \# of equations
Theorem: Let A be a matrix in $\mathbf{M}_{m n}$, where $n>m$.
Then the homogeneous system $A \cdot \vec{x}=\overrightarrow{0}$ has infinitely many solutions.

Basis in a vector space V

Definition: A set $S=\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{r}}\right\}$ of vectors is called a basis for V if

1. S is linearly independent
2. $\quad \operatorname{span}(S)=V$.

In other words, the set $S=\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{r}}\right\}$ is a basis for V if

1. The equation $c_{1} \cdot \overrightarrow{v_{1}}+c_{2} \cdot \overrightarrow{v_{2}}+\ldots+c_{r} \cdot \overrightarrow{v_{r}}=\overrightarrow{0}$ has only the trivial solution.
2. The equation $c_{1} \cdot \overrightarrow{v_{1}}+c_{2} \cdot \overrightarrow{v_{2}}+\ldots+c_{r} \cdot \overrightarrow{v_{r}}=\vec{b}$ has a solution for every \vec{b} in \mathbb{R}^{n}.

Standard bases for the most popular vector spaces

- $\ln \mathbb{R}^{2}:\{\vec{i}, \vec{j}\}$.
- $\ln \mathbb{R}^{3}:\{\vec{i}, \vec{j}, \vec{k}\}$.

■ $\ln \mathbb{R}^{n}:\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$.
$-\ln \mathbf{P}_{n}: 1, X, X^{2}, \ldots, X^{n}$.

- In \mathbf{M}_{22} : all matrices with all entries 0 except for one entry, which is 1 . There are 4 such matrices.
- In $\mathbf{M}_{m n}$: all matrices with all entries 0 except for one entry, which is 1 . There are $m \cdot n$ such matrices.

Dimension of a vector space

Some vector spaces do not have a finite basis.
A vector space has many different bases. However,
Theorem: All bases of a finite dimensional vector space have the same number of elements.

Definition: Let V be a finite dimensional vector space. We call dimension of V is the number of elements of a basis for V. We use the notation $\operatorname{dim}(V)$ for the dimension of V.

Example: Counting the elements of the standard basis of each of the popular vectors spaces, we have that:

- $\operatorname{dim}\left(\mathbb{R}^{n}\right)=n$
- $\operatorname{dim}\left(\mathbf{P}_{n}\right)=n+1$
- $\operatorname{dim}\left(\mathbf{M}_{m n}=m \cdot n\right.$

