General linear transformations

Definition: Let V, W be two vector spaces. A function $T: V \rightarrow W$ is called a linear transformation from V to W if the following hold for all vectors u, v in V and for all scalars k.
(i) $T(u+v)=T(u)+T(v)$ (additivity)
(ii) $T(k u)=k T(u)$ (homogeneity)

If V and W are the same, we call a linear transformation from V to V a linear operator.

Theorem: A function $T: V \rightarrow W$ is a linear transformation if and only if for all vectors v_{1}, v_{2} in V and for all scalars k_{1}, k_{2} we have

$$
T\left(k_{1} v_{1}+k_{2} v_{2}\right)=k_{1} T\left(v_{1}\right)+k_{2} T\left(v_{2}\right)
$$

General linear transformations

Theorem (basic properties of linear transformations): If T is a linear transformation then
a) $T(\overrightarrow{0})=\overrightarrow{0}$
b) $T(-v)=-T(v)$
c) $T(u-v)=T(u)-T(v)$

Theorem: If $T: V \rightarrow W$ is a linear transformation, $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis in V, then for any vector v in V we can evaluate $T(v)$ by

$$
T(v)=c_{1} T\left(v_{1}\right)+c_{2} T\left(v_{2}\right)+\ldots+c_{n} T\left(v_{n}\right)
$$

where $v=c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}$.

Kernel and range of a linear transformation

Definition: Let $T: V \rightarrow W$ is a linear transformation.

- The set of all vectors v in V for which $T(v)=\overrightarrow{0}$ is called the kernel of T.
We denote the kernel of T by $\operatorname{ker}(T)$.
■ The set of all outputs (images) $T(v)$ of vectors in V via the transformation T is called the range of T.
We denote the range of T by $R(T)$.
Theorem: If $T: V \rightarrow W$ is a linear transformation, then $\operatorname{ker}(T)$ is a subspace of V, while $R(T)$ is a subspace of W.
Definition: If V and W are finite dimensional vector spaces and $T: V \rightarrow W$ is a linear transformation, then we call
- $\operatorname{dim} \operatorname{ker}(T)=$ nullity of T

■ $\operatorname{dim} R(T)=$ rank of T
Theorem: If V and W are finite dimensional vector spaces and $T: V \rightarrow W$ is a linear transformation, then

$$
\operatorname{rank}(T)+\operatorname{nullity}(T)=\operatorname{dim}(V)
$$

One-to-one and onto functions

Definition (one-to-one function): A function $f: X \rightarrow Y$ is called one-to-one if to distinct inputs it assigns distinct outputs. More precisely, f is 1-1 means: if $x_{1} \neq x_{2}$ then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$. This is logically equivalent to saying that if $f\left(x_{1}\right)=f\left(x_{2}\right)$ then $x_{1}=x_{2}$.

Definition (onto function): A function $f: X \rightarrow Y$ is called onto if every element in Y is an output of f.
More precisely, f is onto if for every y in Y there is at least one x in X such that $f(x)=y$.

Linear transformations are functions, so being one-to-one or onto applies (makes sense) for them as well.

Isomorphism

Theorem: A linear transformation $T: V \rightarrow W$ is one-to-one if and only if $\operatorname{ker}(T)=\{\overrightarrow{0}\}$.

Theorem: Let $T: V \rightarrow V$ be a linear operator, where V is a finite dimensional vector space.
The following statements are equivalent.
a) T is one-to-one
b) $\operatorname{ker}(T)=\{\overrightarrow{0}\}$
c) T is onto.

Definition: A linear transformation $T: V \rightarrow W$ which is one-to-one and onto is called an isomorphism.
Two vector spaces V and W are called isomorphic if there is an isomorphism $T: V \rightarrow W$.
Examples: P_{n-1} is isomorphic to $\mathbb{R}^{n} . M_{2 \times 2}(\mathbb{R})$ is isomorphic to \mathbb{R}^{4}.
Theorem: Every n dimensional vector space is isomorphic to \mathbb{R}^{n}.

