General linear transformations

<u>Definition</u>: Let V, W be two vector spaces. A function $T: V \rightarrow W$ is called a *linear transformation* from V to W if the following hold for all vectors u, v in V and for all scalars k.

(i)
$$T(u+v) = T(u) + T(v)$$
 (additivity)

(ii)
$$T(ku) = kT(u)$$
 (homogeneity)

If V and W are the same, we call a linear transformation from V to V a *linear operator*.

<u>Theorem</u>: A function $T: V \to W$ is a linear transformation if and only if for all vectors v_1, v_2 in V and for all scalars k_1, k_2 we have

$$T(k_1 v_1 + k_2 v_2) = k_1 T(v_1) + k_2 T(v_2)$$

General linear transformations

<u>Theorem</u> (basic properties of linear transformations): If T is a linear transformation then

a)
$$T(\vec{0}) = \vec{0}$$

b) $T(-v) = -T(v)$
c) $T(u-v) = T(u) - T(v)$

<u>Theorem</u>: If $T: V \rightarrow W$ is a linear transformation,

 $S = \{v_1, v_2, \dots, v_n\}$ is a basis in V, then for any vector v in V we can evaluate T(v) by

$$T(v) = c_1 T(v_1) + c_2 T(v_2) + \ldots + c_n T(v_n)$$

where $v = c_1 v_1 + c_2 v_2 + \ldots + c_n v_n$.

Kernel and range of a linear transformation

<u>Definition</u>: Let $T: V \rightarrow W$ is a linear transformation.

The set of all vectors v in V for which $T(v) = \vec{0}$ is called the *kernel* of T.

We denote the kernel of T by ker(T).

The set of all outputs (images) T(v) of vectors in V via the transformation T is called the *range* of T.
 We denote the range of T by R(T).

<u>Theorem</u>: If $T: V \to W$ is a linear transformation, then ker(T) is a *subspace* of V, while R(T) is a subspace of W.

<u>Definition</u>: If V and W are *finite* dimensional vector spaces and $T: V \rightarrow W$ is a linear transformation, then we call

• dim R(T) = rank of T

<u>Theorem</u>: If V and W are finite dimensional vector spaces and $T: V \rightarrow W$ is a linear transformation, then

rank (T) + nullity $(T) = \dim(V)$

One-to-one and onto functions

<u>Definition</u> (one-to-one function): A function $f: X \to Y$ is called one-to-one if to distinct inputs it assigns distinct outputs. More precisely, f is 1-1 means: if $x_1 \neq x_2$ then $f(x_1) \neq f(x_2)$. This is logically equivalent to saying that if $f(x_1) = f(x_2)$ then $x_1 = x_2$.

<u>Definition</u> (onto function): A function $f: X \to Y$ is called *onto* if every element in Y is an output of f. More precisely, f is onto if for every y in Y there is at least one x in X such that f(x) = y.

Linear transformations are functions, so being one-to-one or onto applies (makes sense) for them as well.

Isomorphism

<u>Theorem</u>: A linear transformation $T: V \to W$ is one-to-one if and only if ker $(T) = {\vec{0}}$.

<u>Theorem</u>: Let $T: V \rightarrow V$ be a linear operator, where V is a finite dimensional vector space.

The following statements are equivalent.

b) ker
$$(T) = \{\vec{0}\}$$

c) T is onto.

<u>Definition</u>: A linear transformation $T: V \to W$ which is one-to-one and onto is called an *isomorphism*. Two vector spaces V and W are called *isomorphic* if there is an isomorphism $T: V \to W$.

Examples: P_{n-1} is isomorphic to \mathbb{R}^n . $M_{2\times 2}(\mathbb{R})$ is isomorphic to \mathbb{R}^4 . <u>Theorem</u>: Every *n* dimensional vector space is isomorphic to \mathbb{R}^n .