Inner products

<u>Definition</u>: An *inner product* on a real vector space V is an operation (function) that assigns to each pair of vectors (\vec{u}, \vec{v}) in V a scalar $\langle \vec{u}, \vec{v} \rangle$ satisfying the following axioms:

1.
$$\langle \vec{u}, \vec{v} \rangle = \langle \vec{v}, \vec{u} \rangle$$
 (Symmetry)
2. $\langle \vec{u} + \vec{v}, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$ (Additivity)
3. $\langle k \vec{u}, \vec{v} \rangle = k \langle \vec{u}, \vec{v} \rangle$ (Homogeneity)
4. $\langle \vec{v}, \vec{v} \rangle \ge 0$ and $\langle \vec{v}, \vec{v} \rangle = 0$ iff $\vec{v} = \vec{0}$ (Positivity)

<u>Theorem</u> (basic properties): Given vectors $\vec{u}, \vec{v}, \vec{w}$ in an inner product space *V*, and a scalar *k*, the following properties hold:

$$\begin{array}{l} \langle \vec{o}, \vec{v} \rangle = \langle \vec{v}, \vec{o} \rangle = 0 \\ \langle \vec{u} - \vec{v}, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle - \langle \vec{v}, \vec{w} \rangle \\ \langle \vec{u}, \vec{v} + \vec{w} \rangle = \langle \vec{u}, \vec{v} \rangle + \langle \vec{u}, \vec{w} \rangle \\ \langle \vec{u}, \vec{v} - \vec{w} \rangle = \langle \vec{u}, \vec{v} \rangle - \langle \vec{u}, \vec{w} \rangle \\ \langle \vec{u}, k\vec{v} \rangle = k \langle \vec{u}, \vec{v} \rangle \end{array}$$

Norm and distance in an inner product space

<u>Definition</u>: If V is a real inner product space then we define

• The norm (or length) of \vec{v} :

$$\|ec{m{v}}\| = \sqrt{\langle ec{m{v}}, ec{m{v}}
angle}$$

• The distance between \vec{u} and \vec{v} :

$$d(ec{u},ec{v}) = \|ec{u}-ec{v}\| = \sqrt{\langleec{u}-ec{v},ec{u}-ec{v}
angle}$$

<u>Theorem</u> (basic properties): Given vectors \vec{u}, \vec{v} in an inner product space *V*, and a scalar *k*, the following properties hold:

$$\|\vec{v}\| \ge 0 \text{ and } \|\vec{v}\| = 0 \text{ iff } \vec{v} = \vec{0}.$$

$$\|k\vec{v}\| = |k| \|\vec{v}\|$$

$$d(\vec{u}, \vec{v}) = d(\vec{v}, \vec{u})$$

$$d(\vec{u}, \vec{v}) \ge 0 \text{ and } d(\vec{u}, \vec{v}) = 0 \text{ iff } \vec{u} = \vec{v}.$$

Angle between vectors

<u>Theorem</u> (Cauchy-Schwarz): If u and v are vectors in an inner vector space, then

 $|\langle u,v\rangle| \leq ||u|| \, ||v||$

<u>Definition</u>: The angle between two vectors u and v in an inner vector space is defined as

$$heta = \cos^{-1} \frac{\langle u, v \rangle}{\|u\| \|v\|}$$

<u>Theorem</u> (the triangle inequality): If u, v and w are vectors in an inner vector space, then

$$||u + v|| \le ||u|| + ||v||$$

$$d(u,v) \leq d(u,w) + d(w,v)$$

Orthogonality

<u>Definition</u>: Two vectors u and v in an inner vector space are called *orthogonal* if $\langle u, v \rangle = 0$.

Clearly $u \perp v$ iff the angle between them is $\theta = \frac{\pi}{2}$.

<u>Theorem</u> (the Pythagorean theorem): If u and v are orthogonal vectors in an inner vector space, then

$$||u + v||^2 = ||u||^2 + ||v||^2$$

<u>Definition</u>: Let W be a subspace of an inner product space V. The set of vectors in V which are orthogonal to every vector in W is called the *orthogonal complement* of W and it is denoted by W^{\perp} .

<u>Theorem</u>: The orthogonal complement has the following properties:

- W^{\perp} is a subspace of V.
- $\bullet W \cap W^{\perp} = \{\vec{o}\}.$
- If V has finite dimension then $(W^{\perp})^{\perp} = W$.

Orthogonal sets, orthonormal sets

Let $(V, \langle \rangle)$ be an inner product space and let S be a set of vectors in V.

<u>Definition</u>: The set S is called *orthogonal* if any two vectors in S are orthogonal.

The set S is called *orthonormal* if it is orthogonal and any vector in S has norm 1.

<u>Theorem</u>: Every orthogonal set of nonzero vectors is linearly independent.

<u>Definition</u>: A set of vectors S is called an *orthogonal* basis (OGB) for V if S is a basis and an orthogonal set (that is, S is a basis where all vectors are perpendicular).

A set of vectors S is called an *orthonormal* basis (ONB) for V if S is a basis and an orthonormal set (that is, S is a basis where all vectors are perpendicular and have norm 1).

Orthogonal sets, orthonormal sets

Let $(V, \langle \rangle)$ be an inner product space.

<u>Theorem</u>: If $S = \{v_1, v_2, ..., v_n\}$ is an orthogonal basis in V and u is any vector in V, then

$$u = \frac{\langle u, v_1 \rangle}{\|v_1\|^2} v_1 + \frac{\langle u, v_2 \rangle}{\|v_2\|^2} v_2 + \ldots + \frac{\langle u, v_n \rangle}{\|v_n\|^2} v_n$$

If $S = \{v_1, v_2, \dots, v_n\}$ is an orthonormal basis in V and u is any vector in V, then

$$u = \langle u, v_1 \rangle v_1 + \langle u, v_2 \rangle v_2 + \ldots + \langle u, v_n \rangle v_n$$

Gram-Schmidt process

<u>Theorem</u>: Every nonzero finite dimensional inner product space has an orthonormal basis.

Given a basis $\{u_1, u_2, \ldots, u_n\}$, to find an orthogonal basis $\{v_1, v_2, \ldots, v_n\}$ we use the following procedure:

Step 1.
$$v_1 = u_1$$

Step 2. $v_2 = u_2 - \frac{\langle u_2, v_1 \rangle}{\|v_1\|^2} v_1$
Step 3. $v_3 = u_3 - \frac{\langle u_3, v_1 \rangle}{\|v_1\|^2} v_1 - \frac{\langle u_3, v_2 \rangle}{\|v_2\|^2} v_2$
Step 4. $v_4 = u_4 - \frac{\langle u_4, v_1 \rangle}{\|v_1\|^2} v_1 - \frac{\langle u_4, v_2 \rangle}{\|v_2\|^2} v_2 - \frac{\langle u_4, v_3 \rangle}{\|v_3\|^2} v_3$

and so on for *n* steps, where $n = \dim(V)$.

To obtain an orthonormal basis, we simply normalize the orthogonal basis obtained above.

Formulation of the least squares problem

Given an *inconsistent* system Ax = b, find a vector x that comes "as close as possible" to being a solution.

In other words: find a vector x that *minimizes* the distance beyween b and Ax that is, a vector that minimizes ||b - Ax|| (with respect to the Euclidian inner product).

We call such a vector x a *least squares solution* to the system Ax = b.

We call b - Ax the corresponding *least squares vector* and ||b - Ax|| the corresponding *least squares error*.

<u>Theorem</u>: If x is a least squares solution to the inconsistent system Ax = b, and if W is the column space of A, then x is a solution to the consistent system

$$Ax = \operatorname{proj}_W b$$

<u>Note</u>: The above theorem is not always practical, because finding the orthogonal projection $\operatorname{proj}_W b$ may take time (by using Gram-Schmidt).

Solution of the least squares problem

<u>Theorem</u>: For every inconsistent system Ax = b, the associated normal system

$$A^T A x = A^T b$$

is consistent and its solutions are *least squares solutions* of Ax = b. Moreover, if W is the column space of A and if x is such a least squares solution to Ax = b, then

$$\operatorname{proj}_W b = Ax$$

<u>Theorem</u>: For an inconsistent system Ax = b the following statements are equivalent:

- a) There is a *unique* least squares solution.
- b) The columns of A are linearly independent.
- c) The matrix $A^T A$ is invertible.

<u>Theorem</u>: If an inconsistent system Ax = b has a unique least squares solution, then it can be computed as

$$x^* = (A^T A)^{-1} A^T b$$

<)