Inner products

Definition: An inner product on a real vector space V is an operation (function) that assigns to each pair of vectors (\vec{u}, \vec{v}) in V a scalar $\langle\vec{u}, \vec{v}\rangle$ satisfying the following axioms:

1. $\langle\vec{u}, \vec{v}\rangle=\langle\vec{v}, \vec{u}\rangle$ (Symmetry)
2. $\langle\vec{u}+\vec{v}, \vec{w}\rangle=\langle\vec{u}, \vec{w}\rangle+\langle\vec{v}, \vec{w}\rangle$ (Additivity)
3. $\langle k \vec{u}, \vec{v}\rangle=k\langle\vec{u}, \vec{v}\rangle$ (Homogeneity)
4. $\langle\vec{v}, \vec{v}\rangle \geq 0$ and $\langle\vec{v}, \vec{v}\rangle=0$ iff $\vec{v}=\overrightarrow{0}$ (Positivity)

Theorem (basic properties): Given vectors $\vec{u}, \vec{v}, \vec{w}$ in an inner product space V, and a scalar k, the following properties hold:

- $\langle\vec{o}, \vec{v}\rangle=\langle\vec{v}, \vec{o}\rangle=0$
- $\langle\vec{u}-\vec{v}, \vec{w}\rangle=\langle\vec{u}, \vec{w}\rangle-\langle\vec{v}, \vec{w}\rangle$
- $\langle\vec{u}, \vec{v}+\vec{w}\rangle=\langle\vec{u}, \vec{v}\rangle+\langle\vec{u}, \vec{w}\rangle$

■ $\langle\vec{u}, \vec{v}-\vec{w}\rangle=\langle\vec{u}, \vec{v}\rangle-\langle\vec{u}, \vec{w}\rangle$

- $\langle\vec{u}, k \vec{v}\rangle=k\langle\vec{u}, \vec{v}\rangle$

Norm and distance in an inner product space

Definition: If V is a real inner product space then we define

- The norm (or length) of \vec{v} :

$$
\|\vec{v}\|=\sqrt{\langle\vec{v}, \vec{v}\rangle}
$$

- The distance between \vec{u} and \vec{v} :

$$
d(\vec{u}, \vec{v})=\|\vec{u}-\vec{v}\|=\sqrt{\langle\vec{u}-\vec{v}, \vec{u}-\vec{v}\rangle}
$$

Theorem (basic properties): Given vectors \vec{u}, \vec{v} in an inner product space V, and a scalar k, the following properties hold:

- $\|\vec{v}\| \geq 0$ and $\|\vec{v}\|=0$ iff $\vec{v}=\overrightarrow{0}$.
- $\|k \vec{v}\|=|k|\|\vec{v}\|$
- $d(\vec{u}, \vec{v})=d(\vec{v}, \vec{u})$

■ $d(\vec{u}, \vec{v}) \geq 0$ and $d(\vec{u}, \vec{v})=0$ iff $\vec{u}=\vec{v}$.

Angle between vectors

Theorem (Cauchy-Schwarz): If u and v are vectors in an inner vector space, then

$$
|\langle u, v\rangle| \leq\|u\|\|v\|
$$

Definition: The angle between two vectors u and v in an inner vector space is defined as

$$
\theta=\cos ^{-1} \frac{\langle u, v\rangle}{\|u\|\|v\|}
$$

Theorem (the triangle inequality): If u, v and w are vectors in an inner vector space, then

■ $\|u+v\| \leq\|u\|+\|v\|$
■ $d(u, v) \leq d(u, w)+d(w, v)$

Orthogonality

Definition: Two vectors u and v in an inner vector space are called orthogonal if $\langle u, v\rangle=0$.
Clearly $u \perp v$ iff the angle between them is $\theta=\frac{\pi}{2}$.
Theorem (the Pythagorean theorem): If u and v are orthogonal vectors in an inner vector space, then

$$
\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}
$$

Definition: Let W be a subspace of an inner product space V. The set of vectors in V which are orthogonal to every vector in W is called the orthogonal complement of W and it is denoted by W^{\perp}.

Theorem: The orthogonal complement has the following properties:

- W^{\perp} is a subspace of V.
- $W \cap W^{\perp}=\{\vec{o}\}$.
- If V has finite dimension then $\left(W^{\perp}\right)^{\perp}=W$.

Orthogonal sets, orthonormal sets

Let $(V,\langle \rangle)$ be an inner product space and let S be a set of vectors in V.

Definition: The set S is called orthogonal if any two vectors in S are orthogonal.
The set S is called orthonormal if it is orthogonal and any vector in S has norm 1 .

Theorem: Every orthogonal set of nonzero vectors is linearly independent.

Definition: A set of vectors S is called an orthogonal basis (OGB) for V if S is a basis and an orthogonal set (that is, S is a basis where all vectors are perpendicular).
A set of vectors S is called an orthonormal basis (ONB) for V if S is a basis and an orthonormal set (that is, S is a basis where all vectors are perpendicular and have norm 1).

Orthogonal sets, orthonormal sets

Let $(V,\langle \rangle)$ be an inner product space.
Theorem: If $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is an orthogonal basis in V and u is any vector in V, then

$$
u=\frac{\left\langle u, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}+\frac{\left\langle u, v_{2}\right\rangle}{\left\|v_{2}\right\|^{2}} v_{2}+\ldots+\frac{\left\langle u, v_{n}\right\rangle}{\left\|v_{n}\right\|^{2}} v_{n}
$$

If $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is an orthonormal basis in V and u is any vector in V, then

$$
u=\left\langle u, v_{1}\right\rangle v_{1}+\left\langle u, v_{2}\right\rangle v_{2}+\ldots+\left\langle u, v_{n}\right\rangle v_{n}
$$

Gram-Schmidt process

Theorem: Every nonzero finite dimensional inner product space has an orthonormal basis.

Given a basis $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$, to find an orthogonal basis $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ we use the following procedure:

Step 1. $v_{1}=u_{1}$
Step 2. $v_{2}=u_{2}-\frac{\left\langle u_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}$
Step 3. $v_{3}=u_{3}-\frac{\left\langle u_{3}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}-\frac{\left\langle u_{3}, v_{2}\right\rangle}{\left\|v_{2}\right\|^{2}} v_{2}$
Step 4. $v_{4}=u_{4}-\frac{\left\langle u_{4}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}-\frac{\left\langle u_{4}, v_{2}\right\rangle}{\left\|v_{2}\right\|^{2}} v_{2}-\frac{\left\langle u_{4}, v_{3}\right\rangle}{\left\|v_{3}\right\|^{2}} v_{3}$
and so on for n steps, where $n=\operatorname{dim}(V)$.
To obtain an orthonormal basis, we simply normalize the orthogonal basis obtained above.

Formulation of the least squares problem

Given an inconsistent system $A x=b$, find a vector x that comes "as close as possible" to being a solution.

In other words: find a vector x that minimizes the distance beyween b and $A x$ that is, a vector that minimizes $\|b-A x\|$ (with respect to the Euclidian inner product).
We call such a vector x a least squares solution to the system $A x=b$.

We call $b-A x$ the corresponding least squares vector and $\|b-A x\|$ the corresponding least squares error.
Theorem: If x is a least squares solution to the inconsistent system $A x=b$, and if W is the column space of A, then x is a solution to the consistent system

$$
A x=\operatorname{proj}_{W} b
$$

Note: The above theorem is not always practical, because finding the orthogonal projection $\operatorname{proj}_{W} b$ may take time (by using Gram-Schmidt).

Solution of the least squares problem

Theorem: For every inconsistent system $A x=b$, the associated normal system

$$
A^{T} A x=A^{T} b
$$

is consistent and its solutions are least squares solutions of $A x=b$. Moreover, if W is the column space of A and if x is such a least squares solution to $A x=b$, then

$$
\operatorname{proj}_{W} b=A x
$$

Theorem: For an inconsistent system $A x=b$ the following statements are equivalent:
a) There is a unique least squares solution.
b) The columns of A are linearly independent.
c) The matrix $A^{T} A$ is invertible.

Theorem: If an inconsistent system $A x=b$ has a unique least squares solution, then it can be computed as

$$
x^{*}=\left(A^{T} A\right)^{-1} A^{T} b
$$

