
Inner products
Definition: An inner product on a real vector space V is an
operation (function) that assigns to each pair of vectors (~u, ~v) in
V a scalar 〈~u, ~v〉 satisfying the following axioms:

1. 〈~u, ~v〉 = 〈~v , ~u〉 (Symmetry)

2. 〈~u + ~v , ~w〉 = 〈~u, ~w〉+ 〈~v , ~w〉 (Additivity)

3. 〈k ~u, ~v〉 = k 〈~u, ~v〉 (Homogeneity)

4. 〈~v , ~v〉 ≥ 0 and 〈~v , ~v〉 = 0 iff ~v = ~0 (Positivity)

Theorem (basic properties): Given vectors ~u, ~v , ~w in an inner
product space V , and a scalar k , the following properties hold:

〈~o, ~v〉 = 〈~v ,~o〉 = 0

〈~u − ~v , ~w〉 = 〈~u, ~w〉 − 〈~v , ~w〉
〈~u, ~v + ~w〉 = 〈~u, ~v〉+ 〈~u, ~w〉
〈~u, ~v − ~w〉 = 〈~u, ~v〉 − 〈~u, ~w〉
〈~u, k~v〉 = k 〈~u, ~v〉



Norm and distance in an inner product space

Definition: If V is a real inner product space then we define

The norm (or length) of ~v :

‖~v‖ =
√
〈~v , ~v〉

The distance between ~u and ~v :

d(~u, ~v) = ‖~u − ~v‖ =
√
〈~u − ~v , ~u − ~v〉

Theorem (basic properties): Given vectors ~u, ~v in an inner product
space V , and a scalar k, the following properties hold:

‖~v‖ ≥ 0 and ‖~v‖ = 0 iff ~v = ~0.

‖k~v‖ = |k| ‖~v‖
d(~u, ~v) = d(~v , ~u)

d(~u, ~v) ≥ 0 and d(~u, ~v) = 0 iff ~u = ~v .



Angle between vectors

Theorem (Cauchy-Schwarz): If u and v are vectors in an inner
vector space, then ∣∣〈u, v〉∣∣ ≤ ‖u‖ ‖v‖
Definition: The angle between two vectors u and v in an inner
vector space is defined as

θ = cos−1
〈u, v〉
‖u‖ ‖v‖

Theorem (the triangle inequality): If u, v and w are vectors in an
inner vector space, then

‖u + v‖ ≤ ‖u‖+ ‖v‖
d(u, v) ≤ d(u,w) + d(w , v)



Orthogonality
Definition: Two vectors u and v in an inner vector space are called
orthogonal if 〈u, v〉 = 0.

Clearly u ⊥ v iff the angle between them is θ = π
2 .

Theorem (the Pythagorean theorem): If u and v are orthogonal
vectors in an inner vector space, then

‖u + v‖2 = ‖u‖2 + ‖v‖2

Definition: Let W be a subspace of an inner product space V .
The set of vectors in V which are orthogonal to every vector in W
is called the orthogonal complement of W and it is denoted by
W⊥.

Theorem: The orthogonal complement has the following
properties:

W⊥ is a subspace of V .

W ∩W⊥ = {~o}.
If V has finite dimension then (W⊥)⊥ = W .



Orthogonal sets, orthonormal sets

Let (V , 〈 〉) be an inner product space and let S be a set of vectors
in V .

Definition: The set S is called orthogonal if any two vectors in S
are orthogonal.
The set S is called orthonormal if it is orthogonal and any vector in
S has norm 1.

Theorem: Every orthogonal set of nonzero vectors is linearly
independent.

Definition: A set of vectors S is called an orthogonal basis (OGB)
for V if S is a basis and an orthogonal set (that is, S is a basis
where all vectors are perpendicular).
A set of vectors S is called an orthonormal basis (ONB) for V if S
is a basis and an orthonormal set (that is, S is a basis where all
vectors are perpendicular and have norm 1).



Orthogonal sets, orthonormal sets

Let (V , 〈 〉) be an inner product space.

Theorem: If S = {v1, v2, . . . , vn} is an orthogonal basis in V and u
is any vector in V , then

u =
〈u, v1〉
‖v1‖2

v1 +
〈u, v2〉
‖v2‖2

v2 + . . .+
〈u, vn〉
‖vn‖2

vn

If S = {v1, v2, . . . , vn} is an orthonormal basis in V and u is any
vector in V , then

u = 〈u, v1〉 v1 + 〈u, v2〉 v2 + . . .+ 〈u, vn〉 vn



Gram-Schmidt process

Theorem: Every nonzero finite dimensional inner product space has
an orthonormal basis.

Given a basis {u1, u2, . . . , un}, to find an orthogonal basis
{v1, v2, . . . , vn} we use the following procedure:

Step 1. v1 = u1

Step 2. v2 = u2 − 〈u2,v1〉‖v1‖2 v1

Step 3. v3 = u3 − 〈u3,v1〉‖v1‖2 v1 − 〈u3,v2〉‖v2‖2 v2

Step 4. v4 = u4 − 〈u4,v1〉‖v1‖2 v1 − 〈u4,v2〉‖v2‖2 v2 − 〈u4,v3〉‖v3‖2 v3

and so on for n steps, where n = dim(V ).

To obtain an orthonormal basis, we simply normalize the
orthogonal basis obtained above.



Formulation of the least squares problem
Given an inconsistent system Ax = b, find a vector x that comes
”as close as possible” to being a solution.

In other words: find a vector x that minimizes the distance
beyween b and Ax that is, a vector that minimizes ‖b−Ax‖ (with
respect to the Euclidian inner product).

We call such a vector x a least squares solution to the system
Ax = b.

We call b − Ax the corresponding least squares vector and
‖b − Ax‖ the corresponding least squares error.

Theorem: If x is a least squares solution to the inconsistent system
Ax = b, and if W is the column space of A, then x is a solution to
the consistent system

Ax = projW b

Note: The above theorem is not always practical, because finding
the orthogonal projection projW b may take time (by using
Gram-Schmidt).



Solution of the least squares problem
Theorem: For every inconsistent system Ax = b, the associated
normal system

ATAx = ATb

is consistent and its solutions are least squares solutions of Ax = b.

Moreover, if W is the column space of A and if x is such a least
squares solution to Ax = b, then

projW b = Ax

Theorem: For an inconsistent system Ax = b the following
statements are equivalent:

a) There is a unique least squares solution.
b) The columns of A are linearly independent.
c) The matrix ATA is invertible.

Theorem: If an inconsistent system Ax = b has a unique least
squares solution, then it can be computed as

x∗ = (ATA)−1ATb


