Inner products

<u>Definition</u>: An *inner product* on a real vector space V is an operation (function) that assigns to each pair of vectors (\vec{u}, \vec{v}) in V a scalar $\langle \vec{u}, \vec{v} \rangle$ satisfying the following axioms:

- 1. $\langle \vec{u}, \vec{v} \rangle = \langle \vec{v}, \vec{u} \rangle$ (Symmetry)
- 2. $\langle \vec{u} + \vec{v}, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$ (Additivity)
- 3. $\langle k \vec{u}, \vec{v} \rangle = k \langle \vec{u}, \vec{v} \rangle$ (Homogeneity)
- 4. $\langle \vec{v}, \vec{v} \rangle \geq 0$ and $\langle \vec{v}, \vec{v} \rangle = 0$ iff $\vec{v} = \vec{0}$ (Positivity)

<u>Theorem</u> (basic properties): Given vectors $\vec{u}, \vec{v}, \vec{w}$ in an inner product space V, and a scalar k, the following properties hold:

- $\langle \vec{o}, \vec{v} \rangle = \langle \vec{v}, \vec{o} \rangle = 0$

Norm and distance in an inner product space

<u>Definition</u>: If V is a real inner product space then we define

■ The norm (or length) of \vec{v} :

$$\|\vec{v}\| = \sqrt{\langle \vec{v}, \vec{v} \rangle}$$

■ The distance between \vec{u} and \vec{v} :

$$d(\vec{u}, \vec{v}) = \|\vec{u} - \vec{v}\| = \sqrt{\langle \vec{u} - \vec{v}, \vec{u} - \vec{v} \rangle}$$

<u>Theorem</u> (basic properties): Given vectors \vec{u}, \vec{v} in an inner product space V, and a scalar k, the following properties hold:

- $\|\vec{v}\| \ge 0$ and $\|\vec{v}\| = 0$ iff $\vec{v} = \vec{0}$.
- $\|k\vec{v}\| = |k| \|\vec{v}\|$
- $d(\vec{u},\vec{v}) = d(\vec{v},\vec{u})$
- $d(\vec{u}, \vec{v}) \ge 0$ and $d(\vec{u}, \vec{v}) = 0$ iff $\vec{u} = \vec{v}$.

Angle between vectors

<u>Theorem</u> (Cauchy-Schwarz): If u and v are vectors in an inner vector space, then

$$|\langle u, v \rangle| \leq ||u|| \, ||v||$$

<u>Definition</u>: The angle between two vectors u and v in an inner vector space is defined as

$$\theta = \cos^{-1} \frac{\langle u, v \rangle}{\|u\| \|v\|}$$

<u>Theorem</u> (the triangle inequality): If u, v and w are vectors in an inner vector space, then

- $||u+v|| \le ||u|| + ||v||$
- $d(u,v) \leq d(u,w) + d(w,v)$

• •

Orthogonality

<u>Definition</u>: Two vectors u and v in an inner vector space are called *orthogonal* if $\langle u, v \rangle = 0$.

Clearly $u \perp v$ iff the angle between them is $\theta = \frac{\pi}{2}$.

<u>Theorem</u> (the Pythagorean theorem): If u and v are orthogonal vectors in an inner vector space, then

$$||u + v||^2 = ||u||^2 + ||v||^2$$

<u>Definition</u>: Let W be a subspace of an inner product space V. The set of vectors in V which are orthogonal to every vector in W is called the *orthogonal complement* of W and it is denoted by W^{\perp} .

<u>Theorem</u>: The orthogonal complement has the following properties:

- W^{\perp} is a subspace of V.
- $W \cap W^{\perp} = \{\vec{o}\}.$
- If V has finite dimension then $(W^{\perp})^{\perp} = W$.

Orthogonal sets, orthonormal sets

Let $(V, \langle \rangle)$ be an inner product space and let S be a set of vectors in V.

<u>Definition</u>: The set S is called *orthogonal* if any two vectors in S are orthogonal.

The set S is called *orthonormal* if it is orthogonal and any vector in S has norm 1.

<u>Theorem</u>: Every orthogonal set of nonzero vectors is linearly independent.

<u>Definition</u>: A set of vectors S is called an *orthogonal* basis (OGB) for V if S is a basis and an orthogonal set (that is, S is a basis where all vectors are perpendicular).

A set of vectors S is called an *orthonormal* basis (ONB) for V if S is a basis and an orthonormal set (that is, S is a basis where all vectors are perpendicular and have norm 1).

Orthogonal sets, orthonormal sets

Let $(V, \langle \rangle)$ be an inner product space.

<u>Theorem</u>: If $S = \{v_1, v_2, \dots, v_n\}$ is an orthogonal basis in V and u is any vector in V, then

$$u = \frac{\langle u, v_1 \rangle}{\|v_1\|^2} v_1 + \frac{\langle u, v_2 \rangle}{\|v_2\|^2} v_2 + \ldots + \frac{\langle u, v_n \rangle}{\|v_n\|^2} v_n$$

If $S = \{v_1, v_2, \dots, v_n\}$ is an orthonormal basis in V and u is any vector in V, then

$$u = \langle u, v_1 \rangle \ v_1 + \langle u, v_2 \rangle \ v_2 + \ldots + \langle u, v_n \rangle \ v_n$$

•

Gram-Schmidt process

<u>Theorem</u>: Every nonzero finite dimensional inner product space has an orthonormal basis.

Given a basis $\{u_1, u_2, \dots, u_n\}$, to find an orthogonal basis $\{v_1, v_2, \dots, v_n\}$ we use the following procedure:

Step 1.
$$v_1 = u_1$$

Step 2. $v_2 = u_2 - \frac{\langle u_2, v_1 \rangle}{\|v_1\|^2} v_1$
Step 3. $v_3 = u_3 - \frac{\langle u_3, v_1 \rangle}{\|v_1\|^2} v_1 - \frac{\langle u_3, v_2 \rangle}{\|v_2\|^2} v_2$
Step 4. $v_4 = u_4 - \frac{\langle u_4, v_1 \rangle}{\|v_1\|^2} v_1 - \frac{\langle u_4, v_2 \rangle}{\|v_2\|^2} v_2 - \frac{\langle u_4, v_3 \rangle}{\|v_3\|^2} v_3$
and so on for n steps, where $n = \dim(V)$.

To obtain an orthonormal basis, we simply normalize the orthogonal basis obtained above.