Inner products

<u>Definition</u>: An *inner product* on a real vector space V is an operation (function) that assigns to each pair of vectors (\vec{u}, \vec{v}) in V a scalar $\langle \vec{u}, \vec{v} \rangle$ satisfying the following axioms:

1.
$$\langle \vec{u}, \vec{v} \rangle = \langle \vec{v}, \vec{u} \rangle$$
 (Symmetry)
2. $\langle \vec{u} + \vec{v}, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$ (Additivity)
3. $\langle k \vec{u}, \vec{v} \rangle = k \langle \vec{u}, \vec{v} \rangle$ (Homogeneity)
4. $\langle \vec{v}, \vec{v} \rangle \ge 0$ and $\langle \vec{v}, \vec{v} \rangle = 0$ iff $\vec{v} = \vec{0}$ (Positivity)

<u>Theorem</u> (basic properties): Given vectors $\vec{u}, \vec{v}, \vec{w}$ in an inner product space *V*, and a scalar *k*, the following properties hold:

$$\begin{array}{l} \langle \vec{o}, \vec{v} \rangle = \langle \vec{v}, \vec{o} \rangle = 0 \\ \langle \vec{u} - \vec{v}, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle - \langle \vec{v}, \vec{w} \rangle \\ \langle \vec{u}, \vec{v} + \vec{w} \rangle = \langle \vec{u}, \vec{v} \rangle + \langle \vec{u}, \vec{w} \rangle \\ \langle \vec{u}, \vec{v} - \vec{w} \rangle = \langle \vec{u}, \vec{v} \rangle - \langle \vec{u}, \vec{w} \rangle \\ \langle \vec{u}, \vec{k} \vec{v} \rangle = k \langle \vec{u}, \vec{v} \rangle \end{array}$$

Norm and distance in an inner product space

<u>Definition</u>: If V is a real inner product space then we define

• The norm (or length) of \vec{v} :

$$\|ec{m{v}}\| = \sqrt{\langle ec{m{v}}, ec{m{v}}
angle}$$

• The distance between \vec{u} and \vec{v} :

$$d(ec{u},ec{v}) = \|ec{u}-ec{v}\| = \sqrt{\langleec{u}-ec{v},ec{u}-ec{v}
angle}$$

<u>Theorem</u> (basic properties): Given vectors \vec{u}, \vec{v} in an inner product space *V*, and a scalar *k*, the following properties hold:

$$\|\vec{v}\| \ge 0 \text{ and } \|\vec{v}\| = 0 \text{ iff } \vec{v} = \vec{0}.$$

$$\|k\vec{v}\| = |k| \|\vec{v}\|$$

$$d(\vec{u}, \vec{v}) = d(\vec{v}, \vec{u})$$

$$d(\vec{u}, \vec{v}) \ge 0 \text{ and } d(\vec{u}, \vec{v}) = 0 \text{ iff } \vec{u} = \vec{v}.$$

Angle between vectors

<u>Theorem</u> (Cauchy-Schwarz): If u and v are vectors in an inner vector space, then

 $|\langle u,v\rangle| \leq ||u|| \, ||v||$

<u>Definition</u>: The angle between two vectors u and v in an inner vector space is defined as

$$heta = \cos^{-1} \frac{\langle u, v \rangle}{\|u\| \|v\|}$$

<u>Theorem</u> (the triangle inequality): If u, v and w are vectors in an inner vector space, then

$$||u + v|| \le ||u|| + ||v||$$

$$d(u,v) \leq d(u,w) + d(w,v)$$

Orthogonality

<u>Definition</u>: Two vectors u and v in an inner vector space are called *orthogonal* if $\langle u, v \rangle = 0$.

Clearly $u \perp v$ iff the angle between them is $\theta = \frac{\pi}{2}$.

<u>Theorem</u> (the Pythagorean theorem): If u and v are orthogonal vectors in an inner vector space, then

$$||u + v||^2 = ||u||^2 + ||v||^2$$

<u>Definition</u>: Let W be a subspace of an inner product space V. The set of vectors in V which are orthogonal to every vector in W is called the *orthogonal complement* of V and it is denoted by W^{\perp} .

<u>Theorem</u>: The orthogonal complement has the following properties:

- W^{\perp} is a subspace of V.
- $\bullet W \cap W^{\perp} = \{\vec{\mathbf{o}}\}.$
- If V has finite dimension then $(W^{\perp})^{\perp} = W$.