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Exercise set 09

Compulsory exercises

Hand in your solutions to these exercises. All answers must be justified.

Chapter 8.1 - Linear transformations

Exercise 1 Do exercise 3 and 4 in chapter 8.1 of Elementary Linear Algebra.

(3) We have T (−1 · u) = ‖ − u‖ = ‖u‖ 6= −1 · T (u), so T is not linear.

(4) We have seen earlier in the course that

T (u+w) = (u+w)× v0 = u× v0 +w × v0 = T (u) + T (w)

and
T (λu) = (λu)× v0 = λ(u× v0) = λT (u).

So T is a linear transformation.

We have that u×v0 = 0 iff u is a multiple of v0, so the kernel of T is LinSpan{v0}.

Chapter 5.1 - Eigenvalues and eigenvectors

Exercise 2 Do exercise 2 in chapter 5.1 of Elementary Linear Algebra.

Ax =

[
5 −1
1 3

] [
1
1

]
=

[
4
4

]
= 4

[
1
1

]
So x is an eigenvector with eigenvalue 4.

Exercise 3 Do exercise 6a in chapter 5.1 of Elementary Linear Algebra.

The charcteristic equation is det(λI−A) = 0, which gives us λ2−4λ+3 = 0. The solutions
to this equation are λ = 3 and λ = 1, so the eigenvalues of A are 3 and 1. To find the
bases for the eigenspaces we rowreduce λI −A:

λ = 3:

[
1 −1
−1 1

]
∼

[
1 −1
0 0

]
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So the eigenspace associated to 3 consists of all vectors where x1 − x2 = 0 and x2 is free.

A bais is given by
{[

1
1

]}
.

We do a similar calculation for λ = 1:

λ = 1:

[
−1 −1
−1 −1

]
∼

[
1 1
0 0

]

Which gives us basis
{[
−1
1

]}
.

Exercise 4 Do exercise 25 in chapter 5.1 of Elementary Linear Algebra.

(a) Since the characteristic polynomial has degree 1 + 2 + 3 = 6, the matrix is 6× 6.

(b) Since 0 is not a root of the characteristic polynomial, A does not have 0 as an
eigenvalue. That means that the nullspace N(A) is {0}, which for a square matrix
is equivalent to being invertible. So A is invertible.

(c) A matrix has one eigenspace for each eigenvalue. From the characteristic polynomial
we see that we have 3 eigenvalues, and thus 3 eigenspaces.

Exercise 5 Do exercise 33 in chapter 5.1 of Elementary Linear Algebra.

We have that x is an eigenvector with eigenvalue λ. That means that Ax = λx. If we
multiply both sides by A−1 we get:

A−1Ax = A−1λx

x = A−1λx

x = λA−1x

1

λ
x = A−1x

This is exactly the statement that x is an eigenvector of A−1 with eigenvalue 1/λ, which
is what we wanted to prove.

Exercise 6 Let A be the matrix in exercise 6a in chapter 5.1, considered earlier in this
exercise set. Diagonalize A, i.e. find an invertible matrix P and a diagonal matrix D such
that A = PDP−1. Verify your solution by checking that AP = PD.

Earlier we found the eigenvalues of A to be 3 and 1 and we found corresponding basisvectors[
1
1

]
and

[
−1
1

]
. This gives us that

P =

[
1 −1
1 1

]
, D =

[
3 0
0 1

]
We verify this by computing AP and PD:

AP =

[
3 −1
3 1

]
= PD
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