MA1201 Linear Algebra and Geometry

Compulsory exercises

Hand in your solutions to these exercises. All answers must be justified.

Chapter 8.1 - Linear transformations

Exercise 1 Do exercise 3 and 4 in chapter 8.1 of Elementary Linear Algebra.
(3) We have $T(-1 \cdot \mathbf{u})=\|-\mathbf{u}\|=\|\mathbf{u}\| \neq-1 \cdot T(\mathbf{u})$, so T is not linear.
(4) We have seen earlier in the course that

$$
T(\mathbf{u}+\mathbf{w})=(\mathbf{u}+\mathbf{w}) \times \mathbf{v}_{0}=\mathbf{u} \times \mathbf{v}_{0}+\mathbf{w} \times \mathbf{v}_{0}=T(\mathbf{u})+T(\mathbf{w})
$$

and

$$
T(\lambda \mathbf{u})=(\lambda \mathbf{u}) \times \mathbf{v}_{0}=\lambda\left(\mathbf{u} \times \mathbf{v}_{0}\right)=\lambda T(\mathbf{u}) .
$$

So T is a linear transformation.
We have that $\mathbf{u} \times \mathbf{v}_{0}=\mathbf{0}$ iff \mathbf{u} is a multiple of \mathbf{v}_{0}, so the kernel of T is $\operatorname{LinSpan}\left\{\mathbf{v}_{0}\right\}$.

Chapter 5.1-Eigenvalues and eigenvectors

Exercise 2 Do exercise 2 in chapter 5.1 of Elementary Linear Algebra.

$$
A \mathbf{x}=\left[\begin{array}{cc}
5 & -1 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
4
\end{array}\right]=4\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

So \mathbf{x} is an eigenvector with eigenvalue 4 .
Exercise 3 Do exercise 6a in chapter 5.1 of Elementary Linear Algebra.
The charcteristic equation is $\operatorname{det}(\lambda I-A)=0$, which gives us $\lambda^{2}-4 \lambda+3=0$. The solutions to this equation are $\lambda=3$ and $\lambda=1$, so the eigenvalues of A are 3 and 1 . To find the bases for the eigenspaces we rowreduce $\lambda I-A$:

$$
\lambda=3: \quad\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] \sim\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right]
$$

So the eigenspace associated to 3 consists of all vectors where $x_{1}-x_{2}=0$ and x_{2} is free. A bais is given by $\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$.

We do a similar calculation for $\lambda=1$:

$$
\lambda=1: \quad\left[\begin{array}{ll}
-1 & -1 \\
-1 & -1
\end{array}\right] \sim\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]
$$

Which gives us basis $\left\{\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$.
Exercise 4 Do exercise 25 in chapter 5.1 of Elementary Linear Algebra.
(a) Since the characteristic polynomial has degree $1+2+3=6$, the matrix is 6×6.
(b) Since 0 is not a root of the characteristic polynomial, A does not have 0 as an eigenvalue. That means that the nullspace $N(A)$ is $\{\mathbf{0}\}$, which for a square matrix is equivalent to being invertible. So A is invertible.
(c) A matrix has one eigenspace for each eigenvalue. From the characteristic polynomial we see that we have 3 eigenvalues, and thus 3 eigenspaces.

Exercise 5 Do exercise 33 in chapter 5.1 of Elementary Linear Algebra.
We have that \mathbf{x} is an eigenvector with eigenvalue λ. That means that $A \mathbf{x}=\lambda \mathbf{x}$. If we multiply both sides by A^{-1} we get:

$$
\begin{aligned}
A^{-1} A \mathbf{x} & =A^{-1} \lambda \mathbf{x} \\
\mathbf{x} & =A^{-1} \lambda \mathbf{x} \\
\mathbf{x} & =\lambda A^{-1} \mathbf{x} \\
\frac{1}{\lambda} \mathbf{x} & =A^{-1} \mathbf{x}
\end{aligned}
$$

This is exactly the statement that \mathbf{x} is an eigenvector of A^{-1} with eigenvalue $1 / \lambda$, which is what we wanted to prove.

Exercise 6 Let A be the matrix in exercise 6a in chapter 5.1, considered earlier in this exercise set. Diagonalize A, i.e. find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$. Verify your solution by checking that $A P=P D$.

Earlier we found the eigenvalues of A to be 3 and 1 and we found corresponding basisvectors $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$. This gives us that

$$
P=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right], \quad D=\left[\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right]
$$

We verify this by computing $A P$ and $P D$:

$$
A P=\left[\begin{array}{cc}
3 & -1 \\
3 & 1
\end{array}\right]=P D
$$

