MA1201 Linear Algebra and Geometry

Compulsory exercises

Hand in your solutions to these exercises. All answers must be justified.

Chapter 3.5-Cross product

Exercise 1 Do exercise 14 in chapter 3.5 of Elementary Linear Algebra.
The triangle is spanned by $A-C=(-2,4)$ and $B-C=(-1,5)$. The area of a triangle is half that of the associated parallellogram thus the area is

$$
\left|\operatorname{det}\left(\left[\begin{array}{cc}
-2 & -1 \\
4 & 5
\end{array}\right]\right)\right|=|-6|=6
$$

Exercise 2 Do exercise 22 in chapter 3.5 of Elementary Linear Algebra.

$$
\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=\operatorname{det}\left(\left[\begin{array}{ccc}
-1 & 3 & -1 \\
2 & 4 & 2 \\
-4 & -2 & 5
\end{array}\right]\right)=-90
$$

Chapter 4.1 - Real vector spaces

Here are the vector space axioms as listed on page 203.

1. If \mathbf{u} and \mathbf{v} are in V, then $\mathbf{u}+\mathbf{v} \in V$.
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
4. There exists an object in V, called the zero vector, that is denoted by $\mathbf{0}$ and has the property that $\mathbf{0}+\mathbf{u}=\mathbf{u}+\mathbf{0}=\mathbf{u}$ for all \mathbf{u} in V.
5. For each \mathbf{u} in V, there is an object $-\mathbf{u}$ in V, called a negative of \mathbf{u}, such that $\mathbf{u}+(-\mathbf{u})=(-\mathbf{u})+\mathbf{u}=\mathbf{0}$.
6. If k is any scalar and $\mathbf{u} \in V$, then $k \mathbf{u} \in V$.
7. $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$
8. $(k+m) \mathbf{u}=k \mathbf{u}+m \mathbf{u}$
9. $k(m \mathbf{u})=(k m)(\mathbf{u})$
10. $1 \mathbf{u}=\mathbf{u}$

Exercise 3 Do exercise 3-9 in chapter 4.1 of Elementary Linear Algebra.
$3,4,6$, and 9 are vector spaces. In exercise 5 axiom 5 and 6 fails. In exercise 7 axiom 8 fails. In exercise 8 axiom 1, 4 , and 6 fails, and axiom 5 is illdefined without axiom 4 .

Chapter 4.2-Subspaces

Exercise 4 Do exercise 6 in chapter 4.2 of Elementary Linear Algebra.
(a) The polynomial $p(x)=1+x$ has rational coefficients, and $\sqrt{2}$ is a real scalar. But $\sqrt{2} p(x)=\sqrt{2}+\sqrt{2} x$ does not have rational coefficients. Hence this is not a subspace.
(b) Let $p(x)=a_{0}+a_{1} x$ and $q(x)=b_{0}+b_{1} x$ be polynomials of the relevant form, and let $k \in \mathbb{R}$ be a scalar. Then $p(x)+q(x)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x$ and $k p(x)=k a_{0}+k a_{1} x$ are also of the relevant form. Hence, the set of such polynomials is a subspace.

