\documentclass[11pt, a4paper, english]{NTNUoving} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{siunitx} \usepackage{pgfplots} \usepackage{blkarray, enumitem, amsthm} %\pgfplotsset{compat=1.9} \usepackage{tikz} \usetikzlibrary{automata,arrows,positioning,calc, tikzmark} \pgfplotsset{compat=1.17} \newcounter{exercisenumber} \newcommand\exnum{\stepcounter{exercisenumber}\theexercisenumber} \newif\ifLF \LFfalse \ovingnr{11} \semester{} \fag{MA1201 Linear Algebra and Geometry } \institutt{Department of Mathematical Sciences } \def\centerfoot{} \begin{document} \section*{Compulsory exercises} Hand in your solutions to these exercises. All answers must be justified. \subsection*{Chapter 6.3 - Gram-Schmidt} {\bf Exercise \exnum} Do exercise 1 in chapter 6.3 of Elementary Linear Algebra. \ifLF{ (a), (b) and (d) are orthogonal. (b) is also orthonormal. }\fi {\bf Exercise \exnum} Do exercise 7 in chapter 6.3 of Elementary Linear Algebra. \ifLF{ A quick computation verifies that $\mathbf v_1 \cdot \mathbf v_2 = \mathbf v_1 \cdot \mathbf v_3 = \mathbf v_2 \cdot \mathbf v_3 = 0$ and that $\|\mathbf v_1\| = \|\mathbf v_2\| = \|\mathbf v_3\| = 1$, thus they form an orthonormal basis. We use the formula from Theorem 6.3.2(b): \begin{align*} \mathbf u &= \langle \mathbf u, \mathbf v_1 \rangle\mathbf v_1 + \langle \mathbf u, \mathbf v_2 \rangle\mathbf v_2 + \langle \mathbf u, \mathbf v_3 \rangle\mathbf v_3\\ \mathbf u &= -\frac{11}{5}\mathbf v_1 -\frac25 \mathbf v_2 + 2\mathbf v_3 \end{align*} }\fi {\bf Exercise \exnum} Do exercise 15 in chapter 6.3 of Elementary Linear Algebra. \ifLF{ \begin{enumerate}[label=(\alph*)] \item \begin{align*} \operatorname{proj}_{\mathbf v}(\mathbf u) &= \frac{\langle \mathbf u, \mathbf v \rangle}{\|\mathbf v\|^2}\mathbf v \\ &= \frac{21/5}{1}\begin{bmatrix} 3/5\\4/5 \end{bmatrix}\\ &= \frac{1}{25}\begin{bmatrix} 63\\84 \end{bmatrix} \end{align*} \item The orthogonal component is given by \begin{align*} \operatorname{proj}_{\mathbf v^\perp}(\mathbf u) &= \mathbf u - \operatorname{proj}_{\mathbf v}(\mathbf u)\\ &= \frac{1}{25}\begin{bmatrix} -88\\ 66 \end{bmatrix} \end{align*} \end{enumerate} }\fi {\bf Exercise \exnum} Do exercise 27 in chapter 6.3 of Elementary Linear Algebra. \ifLF{ We perform the Gram-Schmidt process: \begin{align*} \mathbf v_1 &= \mathbf u_1 = \begin{bmatrix} 1\\-3 \end{bmatrix}\\ \mathbf v_2 &= \mathbf u_2 - \frac{\langle \mathbf u_2, \mathbf v_1 \rangle}{\|\mathbf v_1\|^2}\mathbf v_1\\ &= \begin{bmatrix} 2\\2 \end{bmatrix} - \frac{-4}{10}\begin{bmatrix} 1\\-3 \end{bmatrix}\\ &= \begin{bmatrix} 12/5 \\ 4/5 \end{bmatrix} \end{align*} Then $\{\mathbf v_1, \mathbf v_2\}$ becomes an orthogonal basis. In order to get an orthonormal basis we normalize the vectors and get the bais: \begin{align*} \left\lbrace \frac{\mathbf v_1}{\|\mathbf v_1\|}, \frac{\mathbf v_2}{\|\mathbf v_2\|} \right\rbrace = \left\lbrace \begin{bmatrix} 1/\sqrt{10}\\ -3/\sqrt{10} \end{bmatrix} , \begin{bmatrix} 3/\sqrt{10}\\ 1/\sqrt{10} \end{bmatrix}\right\rbrace \end{align*} }\fi {\bf Exercise \exnum} Do exercise 29 in chapter 6.3 of Elementary Linear Algebra. \ifLF{ We perform the Gram-Schmidt process: \begin{align*} \mathbf v_1 &= \mathbf u_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}\\ \mathbf v_2 &= \mathbf u_2 - \frac{\langle \mathbf u_2, \mathbf v_1 \rangle}{\|v_1\|^2}\mathbf v_1 = \begin{bmatrix} -1\\1\\0 \end{bmatrix}\\ \mathbf v_3 &= \mathbf u_3 - \frac{\langle \mathbf u_3, \mathbf v_1 \rangle}{\|v_1\|^2}\mathbf v_1 - \frac{\langle \mathbf u_3, \mathbf v_2 \rangle}{\|v_2\|^2}\mathbf v_2\\ &= \begin{bmatrix} 1/6\\1/6\\-1/3 \end{bmatrix} \end{align*} After we normalize we get the orthonormal basis \begin{align*} \left\lbrace \frac{1}{\sqrt{3}}\begin{bmatrix} 1\\1\\1 \end{bmatrix}, \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \frac{1}{\sqrt{6}}\begin{bmatrix} 1\\1\\ -2 \end{bmatrix} \right\rbrace \end{align*} }\fi {\bf Exercise \exnum} Continuing off of the previous exercise let $W$ be the plane spanned by $\mathbf u_1$ and $\mathbf u_2$, and let $\mathbf b = (1,2,3)$. Find vectors $\mathbf w_1 \in W$ and $\mathbf w_2 \in W^\perp$ such that $\mathbf b = \mathbf w_1 + \mathbf w_2$. \ifLF{ Since $\mathbf u_1 \cdot \mathbf u_2 = 0$ they form an orthogonal basis for $W$. Then we can calculate $\mathbf w_1$ as the projection of $\mathbf b$ onto $W$. \begin{align*} \mathbf w_1 &= \frac{\langle \mathbf b, \mathbf u_1 \rangle}{\|\mathbf u_1\|}\mathbf u_1 + \frac{\langle \mathbf b, \mathbf u_2 \rangle}{\|\mathbf u_2\|}\mathbf u_2\\ &= \frac{6}{3}\mathbf u_1 + \frac{1}{2}\mathbf u_2\\ &= \begin{bmatrix} 3/2 \\ 5/2\\ 2 \end{bmatrix}\\ &\\ \mathbf w_2 &= \mathbf b - \mathbf w_1\\ &= \begin{bmatrix} -1/2\\-1/2\\1 \end{bmatrix} \end{align*} We can also verify that $\mathbf w_2 \cdot \mathbf u_1 = \mathbf w_2 \cdot \mathbf u_2 = 0$. }\fi \end{document}