\documentclass[11pt, a4paper, english]{NTNUoving} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{siunitx} \usepackage{pgfplots} \usepackage{blkarray, enumitem, amsthm} %\pgfplotsset{compat=1.9} \usepackage{tikz} \usetikzlibrary{automata,arrows,positioning,calc, tikzmark} \pgfplotsset{compat=1.17} \newcounter{exercisenumber} \newcommand\exnum{\stepcounter{exercisenumber}\theexercisenumber} \newif\ifLF \LFfalse \ovingnr{10} \semester{} \fag{MA1201 Linear Algebra and Geometry } \institutt{Department of Mathematical Sciences } \def\centerfoot{} \begin{document} \section*{Compulsory exercises} Hand in your solutions to these exercises. All answers must be justified. \subsection*{Chapter 5.1 - Eigenvalues and eigenvectors} {\bf Exercise \exnum} Do exercise 1 in chapter 5.1 of Elementary Linear Algebra. \ifLF{ \begin{align*} A\mathbf x = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\-1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} = (-1)\begin{bmatrix} 1 \\-1 \end{bmatrix} \end{align*} So $\mathbf x$ is an eigenvector with eigenvalue -1. }\fi {\bf Exercise \exnum} Do exercise 5a in chapter 5.1 of Elementary Linear Algebra. \ifLF{ The charcteristic equation is $\det(\lambda I - A)=0$, which gives us $\lambda^2 - 4\lambda - 5=0$. The solutions to this equation are $\lambda = -1$ and $\lambda = 5$, so the eigenvalues of $A$ are -1 and 5. To find the bases for the eigenspaces we rowreduce $\lambda I -A$: \begin{align*} \lambda =-1 \colon \quad \begin{bmatrix} -2 & -4\\ -2 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2\\0&0 \end{bmatrix} \end{align*} So the eigenspace associated to -1 consists of all vectors where $x_1 +2x_2 = 0$ and $x_2$ is free. A bais is given by $\left\lbrace \begin{bmatrix} -2\\1 \end{bmatrix} \right\rbrace$. We do a similar calculation for $\lambda = 5$: \begin{align*} \lambda =5 \colon \quad \begin{bmatrix} 4 & -4\\ -2 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & -1\\0&0 \end{bmatrix} \end{align*} Which gives us basis $\left\lbrace \begin{bmatrix} 1\\1 \end{bmatrix}\right\rbrace$. }\fi {\bf Exercise \exnum} Do exercise 25 in chapter 5.1 of Elementary Linear Algebra. \ifLF{ \begin{enumerate}[label=(\alph*)] \item Since the characteristic polynomial has degree $1+2+3=6$, the matrix is $6\times 6$. \item Since $0$ is not a root of the characteristic polynomial, $A$ does not have $0$ as an eigenvalue. That means that the nullspace $N(A)$ is $\{\mathbf 0\}$, which for a square matrix is equivalent to being invertible. So $A$ is invertible. \item A matrix has one eigenspace for each eigenvalue. From the characteristic polynomial we see that we have 3 eigenvalues, and thus 3 eigenspaces. \end{enumerate} }\fi {\bf Exercise \exnum} Do exercise 33 in chapter 5.1 of Elementary Linear Algebra. \ifLF{ We have that $\mathbf x$ is an eigenvector with eigenvalue $\lambda$. That means that $A\mathbf x = \lambda \mathbf x$. If we multiply both sides by $A^{-1}$ we get: \begin{align*} A^{-1}A\mathbf x &= A^{-1}\lambda \mathbf x\\ \mathbf x &= A^{-1}\lambda\mathbf x\\ \mathbf x &= \lambda A^{-1}\mathbf x\\ \frac{1}{\lambda}\mathbf x &= A^{-1}\mathbf x \end{align*} This is exactly the statement that $\mathbf x$ is an eigenvector of $A^{-1}$ with eigenvalue $1/\lambda$, which is what we wanted to prove. \qed }\fi \subsection*{Chapter 5.2 - Diagonalization} {\bf Exercise \exnum} Let $A$ be the matrix in exercise 5a in chapter 5.1, considered earlier in this exercise set. Diagonalize $A$, i.e. find an invertible matrix $P$ and a diagonal matrix $D$ such that $A=PDP^{-1}$. Verify your solution by checking that $AP=PD$. \ifLF{ Earlier we found the eigenvalues of $A$ to be $-1$ and $5$ and we found corresponding basisvectors $\begin{bmatrix} -2\\1 \end{bmatrix}$ and $\begin{bmatrix} 1\\1 \end{bmatrix}$. This gives us that \begin{align*} P = \begin{bmatrix} -2 & 1\\ 1 & 1 \end{bmatrix}, \quad D= \begin{bmatrix} -1 & 0\\ 0 & 5 \end{bmatrix} \end{align*} We verify this by computing $AP$ and $PD$: \begin{align*} AP = \begin{bmatrix} 2 & 5\\ -1 & 5 \end{bmatrix} = PD \end{align*} }\fi {\bf Exercise \exnum} In example 6 on page 307 it is shown that if $A=PDP^{-1}$ then $A^k = PD^k P^{-1}$. Use this to compute $A^5$, where $A$ is the matrix from the previous exercise. \ifLF{ So $A^5 = PD^5 P^{-1}$. We first compute $P^{-1}$ to be \begin{align*} P^{-1} = \begin{bmatrix} -\frac13 & \frac13\\ \frac13 & \frac23 \end{bmatrix} \end{align*} Then we can compute $A^5$ as \begin{align*} A^5 = PD^5P^{-1} &= \begin{bmatrix} -2 & 1\\ 1 & 1 \end{bmatrix} \begin{bmatrix} (-1)^5 & 0\\ 0 & 5^5 \end{bmatrix} \begin{bmatrix} -\frac13 & \frac13\\ \frac13 & \frac23 \end{bmatrix}\\ &= \begin{bmatrix} -2 & 1\\ 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0\\ 0 & 3125 \end{bmatrix} \begin{bmatrix} -\frac13 & \frac13\\ \frac13 & \frac23 \end{bmatrix}\\ &= \begin{bmatrix} 2 & 3125\\ -1 & 3125 \end{bmatrix} \begin{bmatrix} -\frac13 & \frac13\\ \frac13 & \frac23 \end{bmatrix}\\ &= \begin{bmatrix} 1041 & 2084\\ 1042 & 2083 \end{bmatrix} \end{align*} }\fi {\bf Exercise \exnum} Do exercise 10 in chapter 5.2 of Elementary Linear Algebra. \ifLF{ \begin{enumerate}[label=(\alph*)] \item The characteristic polynomial of $A$ is $\det(\lambda I - A) = (\lambda-3)(\lambda -2)^2$. So the eigenvalues are 3 and 2. \item For $\lambda =3$ we have that \begin{align*} 3 I - A = \begin{bmatrix} 0 & 0 & 0\\ 0 & 1 & 0\\ 0 & -1 & 1 \end{bmatrix} \sim \begin{bmatrix} 0 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \end{align*} So $3I-A$ has rank 2. For $\lambda = 2$ we have \begin{align*} 2 I - A = \begin{bmatrix} -1 & 0 & 0\\ 0 & 0 & 0\\ 0 & -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 0 \end{bmatrix} \end{align*} So $2I-A$ also has rank 2. \item For $A$ to be diagonalizable we need to find 3 linearly independent eigenvectors. We saw that $\lambda I - A$ has rank 2. Using the Rank-Nullity theorem this means that the null space of $\lambda I-A$ is $3-2=1$-dimensional. The null space of $\lambda I-A$ is exactly the eigenspace of $\lambda$, so we have two 1-dimensional eigenspaces. Therefore we can have at most 2 linearly independent eigenvectors, and $A$ is not diagonalizable. \end{enumerate} }\fi \end{document}