\documentclass[11pt, a4paper, english]{NTNUoving} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{siunitx} \usepackage{pgfplots} \usepackage{blkarray, enumitem, amsthm} %\pgfplotsset{compat=1.9} \usepackage{tikz} \usetikzlibrary{automata,arrows,positioning,calc, tikzmark} \pgfplotsset{compat=1.17} \newcounter{exercisenumber} \newcommand\exnum{\stepcounter{exercisenumber}\theexercisenumber} \newif\ifLF \LFfalse \ovingnr{08} \semester{} \fag{MA1201 Linear Algebra and Geometry } \institutt{Department of Mathematical Sciences } \def\centerfoot{} \begin{document} \section*{Compulsory exercises} Hand in your solutions to these exercises. All answers must be justified. \subsection*{Chapter 4.5 - Coordinates} {\bf Exercise \exnum} Do exercise 11 in chapter 4.5 of Elementary Linear Algebra. \ifLF{ \begin{enumerate}[label=(\alph*)] \item We set up the augmented matrix and rowreduce: \begin{align*} \begin{bmatrix} 2 & 3 & 1\\ -4 & 8 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & \frac{5}{28}\\ 0 & 1 & \frac3{14} \end{bmatrix} \end{align*} So $[\mathbf w]_{S} = \begin{bmatrix} \frac5{28}\\ \frac{3}{14} \end{bmatrix}$. \item We set up the augmented matrix and rowreduce: \begin{align*} \begin{bmatrix} 1 & 0 & a\\ 1 & 2 & b \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & a\\ 0 & 1 & \frac{b-a}2 \end{bmatrix} \end{align*} So $[\mathbf w]_{S} = \begin{bmatrix} a\\ \frac{b-a}2 \end{bmatrix}$. \end{enumerate} }\fi {\bf Exercise \exnum} Do exercise 13a in chapter 4.5 of Elementary Linear Algebra. \ifLF{ We set up the augmented matrix and rowreduce: \begin{align*} \begin{bmatrix} 1 & 2 & 3 & 2\\ 0 & 2 & 3 & -1\\ 0 & 0 & 3 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 3\\ 0 & 1 & 0 & -2\\ 0 & 0 & 1 & 1 \end{bmatrix}\\ [\mathbf v]_{S} = \begin{bmatrix} 3\\ -2\\ 1 \end{bmatrix}\\ \end{align*} }\fi \subsection*{Chapter 4.6 - Dimension} {\bf Exercise \exnum} Do exercise 7 in chapter 4.6 of Elementary Linear Algebra. \ifLF{ \begin{enumerate}[label=(\alph*)] \item $3x-2y+5z=0$ has solutions $x = \frac23y - \frac53z$, which in vectorform we can write as \begin{align*} \begin{bmatrix} \frac23y - \frac53z\\ y\\ z \end{bmatrix} = y\begin{bmatrix} \frac23 \\ 1 \\0 \end{bmatrix}+ z\begin{bmatrix} -\frac53\\0\\1 \end{bmatrix} \end{align*} Therefore the space is 2-dimensional with a basis given by \begin{align*} \left\lbrace \begin{bmatrix} \frac23 \\ 1 \\0 \end{bmatrix} ,\begin{bmatrix} -\frac53\\0\\1 \end{bmatrix} \right\rbrace \end{align*} \item $x-y=0$ has solutions $x = y$, which in vectorform we can write as \begin{align*} \begin{bmatrix} y\\ y\\ z \end{bmatrix} = y\begin{bmatrix} 1 \\ 1 \\0 \end{bmatrix}+ z\begin{bmatrix} 0\\0\\1 \end{bmatrix} \end{align*} Therefore the space is 2-dimensional with a basis given by \begin{align*} \left\lbrace \begin{bmatrix} 1 \\ 1 \\0 \end{bmatrix} ,\begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\rbrace \end{align*} \item The line is described as all vectors on the form \begin{align*} \begin{bmatrix} 2t\\-t\\4t \end{bmatrix} = t\begin{bmatrix} 2\\-1\\4 \end{bmatrix} \end{align*} Therefore the space is 1-dimensional with a basis given by \begin{align*} \left\lbrace \begin{bmatrix} 2 \\ -1 \\4 \end{bmatrix} \right\rbrace \end{align*} \item The vectors can be written as \begin{align*} \begin{bmatrix} a \\ a+c\\c \end{bmatrix} = a\begin{bmatrix} 1\\1\\0 \end{bmatrix}+ c\begin{bmatrix} 0\\1\\1 \end{bmatrix} \end{align*} Therefore the space is 2-dimensional with a basis given by \begin{align*} \left\lbrace \begin{bmatrix} 1 \\ 1 \\0 \end{bmatrix} ,\begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\rbrace \end{align*} \end{enumerate} }\fi {\bf Exercise \exnum} Do exercise 9 in chapter 4.6 of Elementary Linear Algebra (You may assume $n=3$ if you prefer). \ifLF{ \begin{enumerate} \item Let $E_{ij}$ be the $n\times n$-matrix which is 1 in coordinate $(i,j)$ and 0 elsewhere. Then a basis for the diagonal matrices is $\{E_{ii}\}_{i=1}^n$, thus the space is $n$-dimensional. \item A basis for the symmetric matrices is $\{E_{ij}+E_{ji}\}_{j \geq i}$ so the space is $\frac{n^2 + n}{2}$-dimensional. \item A basis for the upper triangular matrices is $\{E_{ij}\}_{j \geq i}$ so the space is $\frac{n^2 + n}{2}$-dimensional. \end{enumerate} }\fi \subsection*{Chapter 4.7 - Change of basis} {\bf Exercise \exnum} Do exercise 1 in chapter 4.7 of Elementary Linear Algebra. \ifLF{ \begin{enumerate}[label=(\alph*)] \item We set up the augmented matrix and reduc: \begin{align*} \begin{bmatrix} 2 & 4 & 1 & -1\\ 2 & -1 & 3 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & \frac{13}{10} & \frac{-1}{2}\\ 0 & 1 & \frac{-2}{5} & 0 \end{bmatrix} \end{align*} So the transition matrix from $B'$ to $B$ is \begin{align*} \begin{bmatrix} \frac{13}{10} & \frac{-1}{2}\\ \frac{-2}{5} & 0 \end{bmatrix} \end{align*} \item The transition matrix from $B$ to $B'$ will be the inverse of the one we just computed, thus equal to \begin{align} \frac{1}{-1/5} \begin{bmatrix} 0 & \frac12\\ \frac25 & \frac{13}{10} \end{bmatrix} = \begin{bmatrix} 0 & \frac{-5}{2}\\ -2 & \frac{-13}{2} \end{bmatrix} \end{align} \item We set up the augmented matrix and reduce: \begin{align*} \begin{bmatrix} 2 & 4 & 3\\ 2 & -1 & -5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -\frac{17}{10}\\ 0 & 1 & \frac{8}{5} \end{bmatrix}\\ [\mathbf w]_{B} = \begin{bmatrix} -\frac{17}{10}\\ \frac85 \end{bmatrix} \end{align*} To compute $[\mathbf w]_{B'}$ we multply by the transition matrix \begin{align*} [\mathbf w]_{B'} = \begin{bmatrix} 0 & -\frac52\\ -2 & -\frac{13}2 \end{bmatrix} \begin{bmatrix} -\frac{17}{10}\\ \frac85 \end{bmatrix} = \begin{bmatrix} -4\\ -7 \end{bmatrix} \end{align*} \item We can compute $[\mathbf w]_{B'}$ directly by setting up the augmented matrix and reducing: \begin{align*} \begin{bmatrix} 1 & -1 & 3\\ 3 & -1 & -5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -4\\ 0 & 1 & -7 \end{bmatrix} \end{align*} Which verifies that our answer was correct. \end{enumerate} }\fi {\bf Exercise \exnum} Do exercise 5 in chapter 4.7 of Elementary Linear Algebra. \ifLF{ \begin{enumerate}[label=(\alph*)] \item For something to be a basis it must span $V$ and be linearly independent. We first show linear independence: Assume $a\mathbf g_1 + b\mathbf g_2 = 0$. That means $2a\sin x + a\cos x + 3b\cos x = 0$. If we set $x= \frac{\pi}{2}$ then we get $2a = 0$, which means $a = 0$. Then if we set $x=0$ we get $3b = 0$ which means $b=0$. So $a=b=0$ is the only solution, and they are linearly independent. Since they are two linearly independence vectors, their span is 2-dimensional. And since $V$ is spanned by 2 vectors it must be at most 2-dimensional. Thus $\mathbf g_1$ and $\mathbf g_2$ span all of $V$. Since they are linearly independent and span $V$, they form a basis. \item The transition matrix has columns given by the coordinate vectors \begin{align*} P_{B' \to B} = \begin{bmatrix} [\mathbf g_1]_{B} [\mathbf g_2]_{B} \end{bmatrix} = \begin{bmatrix} 2 & 0\\ 1 & 3 \end{bmatrix} \end{align*} \item \begin{align*} P_{B\to B'} = P_{B'\to B}^{-1} = \begin{bmatrix} \frac12 & 0\\ -\frac16 & \frac13 \end{bmatrix} \end{align*} \item \begin{align*} [\mathbf h]_B = \begin{bmatrix} 2\\-5 \end{bmatrix}, \quad\quad [\mathbf h]_{B'} = P_{B\to B'}[\mathbf h]_B = \begin{bmatrix} 1\\-2 \end{bmatrix} \end{align*} \item We want to solve $\mathbf h = a\mathbf g_1 + b\mathbf g_2$. We can set up this as a system of equations and rowreduce: \begin{align*} \begin{bmatrix} 2 & 0 & 2\\ 1 & 3 & -5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1\\ 0 & 1 & -2 \end{bmatrix} \end{align*} This verifies that our answer is correct. \end{enumerate} }\fi \end{document}