\documentclass[11pt, a4paper, english]{NTNUoving} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{siunitx} \usepackage{pgfplots} \usepackage{blkarray, enumitem, amsthm} %\pgfplotsset{compat=1.9} \usepackage{tikz} \usetikzlibrary{automata,arrows,positioning,calc, tikzmark} \pgfplotsset{compat=1.17} \newcounter{exercisenumber} \newcommand\exnum{\stepcounter{exercisenumber}\theexercisenumber} \newif\ifLF \LFfalse \ovingnr{06} \semester{} \fag{MA1201 Linear Algebra and Geometry } \institutt{Department of Mathematical Sciences } \def\centerfoot{} \begin{document} \section*{Compulsory exercises} Hand in your solutions to these exercises. All answers must be justified. \subsection*{Chapter 3.5 - Cross product} {\bf Exercise \exnum} Do exercise 13 in chapter 3.5 of Elementary Linear Algebra. \ifLF{ The triangle is spanned by $A-C = (3,-2)$ and $B-C = (4,2)$. The area of a triangle is half that of the associated parallellogram thus the area is \begin{align*} \left|\det\left(\begin{bmatrix} 3 & -2\\ 4 & 2 \end{bmatrix}\right)\right| = 14 \end{align*} }\fi {\bf Exercise \exnum} Do exercise 21 in chapter 3.5 of Elementary Linear Algebra. \ifLF{ \begin{align*} \mathbf u \cdot (\mathbf v \times \mathbf w) = \det\left(\begin{bmatrix} -2&0&6\\ 1& -3& 1\\ -5& -1& 1 \end{bmatrix}\right) = -92 \end{align*} }\fi \subsection*{Chapter 4.1 - Real vector spaces} Here are the vector space axioms as listed on page 203. \begin{enumerate} \item If $\mathbf u$ and $\mathbf v$ are in $V$, then $\mathbf u + \mathbf v \in V$. \item $\mathbf u + \mathbf v = \mathbf v + \mathbf u$ \item $(\mathbf u + \mathbf v) + \mathbf w = \mathbf u + (\mathbf v + \mathbf w)$ \item There exists an object in $V$, called the zero vector, that is denoted by $\mathbf 0$ and has the property that $\mathbf 0 + \mathbf u = \mathbf u + \mathbf 0 = \mathbf u$ for all $\mathbf u$ in $V$. \item For each $\mathbf u$ in $V$, there is an object $-\mathbf u$ in $V$, called a negative of $\mathbf u$, such that $\mathbf u+(-\mathbf u) = (-\mathbf u)+\mathbf u = \mathbf 0$. \item If $k$ is any scalar and $\mathbf u \in V$, then $k\mathbf u \in V$. \item $k(\mathbf u+\mathbf v)=k\mathbf u+k\mathbf v$ \item $(k+m)\mathbf u=k\mathbf u+m\mathbf u$ \item $k(m\mathbf u) = (km)(\mathbf u)$ \item $1\mathbf u = \mathbf u$ \end{enumerate} {\bf Exercise \exnum} Do exercise 3-9 in chapter 4.1 of Elementary Linear Algebra. \ifLF{ 3, 4, 6, and 9 are vector spaces. In exercise 5 axiom 5 and 6 fails. In exercise 7 axiom 8 fails. In exercise 8 axiom 1, 4, and 6 fails, and axiom 5 is illdefined without axiom 4. }\fi \subsection*{Chapter 4.2 - Subspaces} {\bf Exercise \exnum} Do exercise 5 in chapter 4.2 of Elementary Linear Algebra. \ifLF{ \begin{enumerate}[label=(\alph*)] \item Let $p(x) = a_1x + a_2x^2 + a_3x^3$ and $q(x) = b_1x+b_2x^2+b_3x^3$ be polynomials in $P_3$ with constant term $0$, and let $k\in\mathbb R$ be a scalar. Then $p(x)+q(x) = (a_1+b_1)x+(a_2+b_2)x^2 + (a_3+b_3)x^3$ and $kp(x)=ka_1x + ka_2x^2 + ka_3x^3$ also have constant term 0. Thus the set of such polynomials is a subspace. \item Let $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ and $q(x) = b_0 + b_1x+b_2x^2+b_3x^3$ be such that $$\sum_{i=0}^3 a_i = 0 = \sum_{i=0}^3 b_i,$$ and let $k\in\mathbb R$ be a scalar. Then $p(x)+q(x) = (a_0 + b_0) + (a_1+b_1)x + (a_2+b_2)x^2 + (a_3+b_3)x^3$ satisfies $$\sum_{i=0}^3 (a_i+b_i) = \sum_{i=0}^3 a_i+\sum_{i=0}^3 b_i = 0,$$ and $kp(x)$ satisfies $$\sum_{i=0}^3 ka_i = k\sum_{i=0}^3 a_i = 0.$$ So the set of such polynomials is a subspace. \end{enumerate} }\fi \end{document}