\documentclass[11pt, a4paper, english]{NTNUoving} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{siunitx} \usepackage{pgfplots} \usepackage{blkarray, enumitem, amsthm} %\pgfplotsset{compat=1.9} \usepackage{tikz} \usetikzlibrary{automata,arrows,positioning,calc, tikzmark} \newcounter{exercisenumber} \newcommand\exnum{\stepcounter{exercisenumber}\theexercisenumber} \newif\ifLF \LFfalse \ovingnr{05} \semester{} \fag{MA1201 Linear Algebra and Geometry } \institutt{Department of Mathematical Sciences } \def\centerfoot{} \begin{document} %\textbf{Due by 30 August 2020} % %{\large \bf Kom-i-gang-oppgaver} % \section*{Compulsory exercises} Hand in your solutions to these exercises. All answers must be justified. \subsection*{Chapter 2.1 - determinants and cofactors} {\bf Exercise \exnum} Let $A = \begin{bmatrix} 1 & 0 & -1\\ 1 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}$. Find $A_{12}$, the cofactor at index $(1,2)$. \ifLF{ To find the cofactor we first remove the first row and second column. \begin{align*} \begin{bmatrix} \tikzmarknode{A11}{1} & \tikzmarknode{A12}{0} & \tikzmarknode{A13}{-1}\\ 1 & 1 & 0\\ 0 & \tikzmarknode{A32}{0} & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} \end{align*} \tikz[overlay,remember picture] { \draw[-,red,thick] (A11.west) -- (A13.east); \draw[-,red,thick] (A12.north) -- (A32.south) } Then the cofactor is given by $(-1)^{1+1} \cdot (-1)^{2+1} \cdot \det\left( \begin{bmatrix} 1&0\\0&1 \end{bmatrix} \right) = -1$ }\fi {\bf Exercise \exnum} Exercise 15 in chapter 2.1 of Elementary Linear Algebra. \ifLF{ \begin{align*} \det\left( \begin{bmatrix} \lambda -2 & 1\\ -5 & \lambda + 4 \end{bmatrix} \right)&= (\lambda-2)(\lambda+4) + 5 \\&= \lambda^2 + 2\lambda -3 \\&= (\lambda -1)(\lambda +3) \end{align*} This is $0$ when $\lambda = 1$ or $\lambda = -3$. }\fi {\bf Exercise \exnum} Exercise 21 in chapter 2.1 of Elementary Linear Algebra. \ifLF{ If we choose the middle column then the expansion becomes \begin{align*} \det\left(\begin{bmatrix} -3 & 0 & 7\\ 2 5 & 1\\ -1 & 0 & 5 \end{bmatrix}\right) = 5 \cdot ((-3)\cdot 5 - 7\cdot(-1)) = -40 \end{align*} }\fi {\bf Exercise \exnum} Exercise 30 in chapter 2.1 of Elementary Linear Algebra. \ifLF{ The determinant of a triangular matrix is the product of teh diagonal elements, so \begin{align*} \det\left(\begin{bmatrix} 1 & 1 & 1 & 1\\ 0 & 2 & 2 & 2\\ 0 & 0 & 3 & 3\\ 0 & 0 & 0 & 4 \end{bmatrix}\right) = 1\cdot 2 \cdot 3 \cdot 4 = 24 \end{align*} }\fi \subsection*{Chapter 2.2 - determinants and row reduction} {\bf Exercise \exnum} Exercise 9 in chapter 2.2 of Elementary Linear Algebra. \ifLF{ We row reduce the matrix keeping track of what type of row operations we perform. \begin{align*} \begin{bmatrix} 3 & -6 & 9\\ -2 & 7 & -2\\ 0 & 1 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 3\\ -2 & 7 & -2\\ 0 & 1 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 3\\ 0 & 3 & 4\\ 0 & 1 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 3\\ 0 & 0 & -11\\ 0 & 1 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 3\\ 0 & 1 & 5\\ 0 & 0 & -11 \end{bmatrix} \end{align*} The determinant of the reduced matrix is $1\cdot 1\cdot (-11)=-11$. The operations we have done that change the determiant is to divide one row by 3, and to swap two rows. Thus the determinant of the original matrix is $(-11)\cdot 3 \cdot (-1) = 33$. }\fi {\bf Exercise \exnum} Exercise 15 in chapter 2.2 of Elementary Linear Algebra. \ifLF{ We can obtain this matrix from the original by first swapping the first and second row, then swapping the second and third row. Thus the determiannt has changed by a factor of $(-1)\cdot (-1)$, meaning it hasn't changed at all. The determinant is $-6$. }\fi {\bf Exercise \exnum} Exercise 22 in chapter 2.2 of Elementary Linear Algebra. \ifLF{ If we take 2 times the first row and add it to the third row we see that we get a row of all zeros. Thus the determinant is 0. }\fi \subsection*{Chapter 2.3 - Cramer's rule} {\bf Exercise \exnum} Calculate the determinant of \begin{align*} \begin{bmatrix} 1 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & -1 \end{bmatrix} \end{align*} \ifLF{ The determiannt is $-2$. }\fi {\bf Exercise \exnum} Find the adjoint of the matrix above. What's the inverse? \ifLF{ The cofactor matrix is \begin{align*} \begin{bmatrix} -1 & 0 & -1\\ 0 & -2 & 0\\ -1 & 0 & 1 \end{bmatrix} \end{align*} To find the adjoint we take the transpose of this which gives us the same thing. The inverse is given by \begin{align*} A^{-1} = \frac{1}{\det(A)}\operatorname{adj}(A) = \begin{bmatrix} frac12 & 0 & \frac12\\ 0 & 1 & 0\\ \frac12 & 0 & -\frac12 \end{bmatrix} \end{align*} }\fi \end{document}