\documentclass[11pt, a4paper, english]{NTNUoving} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{siunitx} \usepackage{pgfplots} \usepackage{blkarray, enumitem} %\pgfplotsset{compat=1.9} \usepackage{tikz} \usetikzlibrary{automata,arrows,positioning,calc} \newcounter{exercisenumber} \newcommand\exnum{\stepcounter{exercisenumber}\theexercisenumber} \newif\ifLF \LFfalse \ovingnr{02} \semester{} \fag{MA1201 Linear Algebra and Geometry } \institutt{Department of Mathematical Sciences } \def\centerfoot{} \begin{document} %\textbf{Due by 30 August 2020} % %{\large \bf Kom-i-gang-oppgaver} % \section*{Compulsory exercises} Hand in your solutions to these exercises. All answers must be justified. \subsection*{Chapter 1.3 - Matrix operations} {\bf Exercise \exnum} Exercise 1a, 1c, 1d, and 1f in chapter 1.3 of Elementary Linear Algebra. \ifLF{ 1a is not defined since $A$ has 5 columns, while $B$ has only 4 rows. 1c is $4\times 2$, 1d is $5\times 2$ and 1f is $5\times 5$. }\fi {\bf Exercise \exnum} Exercise 5a and 5b in chapter 1.3 of Elementary Linear Algebra. \ifLF{ \begin{align*} AB=\begin{bmatrix} 12 & -3\\ -4& 5\\ 4& 1 \end{bmatrix} \end{align*} $BA$ is not defined since $B$ has 2 columns while $A$ has three rows. }\fi \subsection*{Chapter 1.4 - Inverses} {\bf Exercise \exnum} Exercise 10 in chapter 1.4 of Elementary Linear Algebra. \ifLF{ We set up the augmented matrix and rowreduce \begin{align*} \begin{bmatrix} \cos\theta & \sin\theta & 1 & 0\\ -\sin\theta & \cos\theta & 0 & 1 \end{bmatrix} &\sim \begin{bmatrix} \cos^2\theta & \sin\theta\cos\theta & \cos\theta & 0\\ -\sin^2\theta & \sin\theta\cos\theta & 0 & \sin\theta \end{bmatrix} \sim\\ \begin{bmatrix} \cos^2\theta + \sin^2\theta & 0 & \cos\theta & -\sin\theta\\ -\sin^2\theta & \sin\theta\cos\theta & 0 & \sin\theta \end{bmatrix} &= \begin{bmatrix} 1 & 0 & \cos\theta & -\sin\theta\\ -\sin^2\theta & \sin\theta\cos\theta & 0 & \sin\theta \end{bmatrix} \sim\\ \begin{bmatrix} 1 & 0 & \cos\theta & -\sin\theta\\ 0 & \sin\theta\cos\theta & \sin^2\theta\cos\theta & \sin\theta - \sin^3\theta \end{bmatrix} &= \begin{bmatrix} 1 & 0 & \cos\theta & -\sin\theta\\ 0 & \sin\theta\cos\theta & \sin^2\theta\cos\theta & \sin\theta(1-\sin^2\theta) \end{bmatrix} =\\ \begin{bmatrix} 1 & 0 & \cos\theta & -\sin\theta\\ 0 & \sin\theta\cos\theta & \sin^2\theta\cos\theta & \sin\theta\cos^2\theta \end{bmatrix} &\sim \begin{bmatrix} 1 & 0 & \cos\theta & -\sin\theta\\ 0 & 1 & \sin\theta & \cos\theta \end{bmatrix} \end{align*} So the inverse is \begin{align*} \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix} = \begin{bmatrix} \cos(-\theta) & \sin(-\theta)\\ -\sin(-\theta) & \cos(-\theta) \end{bmatrix} \end{align*} }\fi {\bf Exercise \exnum} Exercise 29 in chapter 1.4 of Elementary Linear Algebra. \ifLF{ \begin{align*} A^2 - 9I = (A+3I)(A-3I) = \begin{bmatrix} 2 & 4\\ 8 & -6 \end{bmatrix} \end{align*} }\fi {\bf Exercise \exnum} Exercise 45a and 45b in chapter 1.4 of Elementary Linear Algebra. \ifLF{ \begin{itemize} \item[45a] \begin{align*} A(A^{-1} + B^{-1})B(A+B)^{-1} &= (AA^{-1} + AB^{-1})B(A+B)^{-1}\\ &= (I + AB^{-1})B(A+B)^{-1}\\ &= B(A+B)^{-1} + AB^{-1}B(A+B)^{-1}\\ &= B(A+B)^{-1} + A(A+B)^{-1}\\ &= (B+A)(A+B)^{-1}\\ &= (A+B)(A+B)^{-1}\\ &= I\\ \end{align*} \item[45b] If we multiply the equation by $A^{-1}$ on the left and $A$ on the right we get \begin{align*} A^{-1}A(A^{-1} + B^{-1})B(A+B)^{-1}A &= A^{-1}A = =\\ (A^{-1} + B^{-1})B(A+B)^{-1}A &= I \end{align*} Thus $(A^{-1} + B^{-1})$ is invertible with inverse $B(A+B)^{-1}A$. \end{itemize} }\fi {\bf Exercise \exnum} Exercise 46a in chapter 1.4 of Elementary Linear Algebra. \ifLF{ \begin{align*} (I-A)^2 = (I-A)(I-A) = I^2 - AI - IA + A^2 = I - 2A + A = I-A \end{align*} }\fi \end{document}