

MA1201 Linear Algebra and Geometry

Exercise set 12

Glossary

Engelsk	Norsk
conic section	kjeglesnitt
hyperbola	hyperbel
parabola	parabel
ellipse	ellipse
quadratic form	kvadratisk form

Compulsory exercises

Hand in your solutions to these exercises. All answers must be justified.

Chapter 7.1 - Orthogonal matricies

Exercise 1 Do exercise 2 in chapter 7.1 of Elementary Linear Algebra.

- (a) The identity matrix is orthogonal and is its own inverse.
- (b) We have that

$$\begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix} \cdot \begin{bmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix} = 4/5$$

Hence the columns are not orthogonal and so the matrix cannot be orthogonal.

Exercise 2 Do exercise 26 in chapter 7.1 of Elementary Linear Algebra.

Let us consider a matrix

$$A = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$

Then A is orthogonal if and only if $\left\{ \begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} c \\ d \end{bmatrix} \right\}$ forms an orthonormal basis for \mathbb{R}^2 . In particular we must have $a^2 + b^2 = 1$. This means that (a, b) is a point on the unit circle, hence there is a θ in $[0, 2\pi)$ such that

$$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$

We can further say that $\begin{bmatrix} c \\ d \end{bmatrix}$ must be orthogonal to $\begin{bmatrix} a \\ b \end{bmatrix}$, hence it must equal $s \begin{bmatrix} -b \\ a \end{bmatrix}$ for some real number s. Since it should also have length 1, we must have |s| = 1. This leaves us with two options for A, namely

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \quad \text{or} \quad A = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$$

Both of these give us orthogonal matrices, and so any orthogonal matrix will be of this form.

Chapter 7.2 - Orthogonal diagonalization

Exercise 3 Do exercise 12 in chapter 7.2 of Elementary Linear Algebra.

The characteristic polynomial of the matrix is $\lambda^3 - 2\lambda^2$, so the eigenvalues are 2 and 0. Computing the eigenvectors gives us that $\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}$ is a basis for the eigenspace associated to 2, and $\left\{ \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$ is a basis for the eigenspace associated to 0.

These are already orthogonal, so to get an orthonormal basis of eigenvectors we just need to normalize. This gives us

$$P = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0\\ 1/\sqrt{2} & 1/\sqrt{2} & 0\\ 0 & 0 & 1 \end{bmatrix}$$
$$P^{-1}AP = \begin{bmatrix} 2 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}$$

Exercise 4 Do exercise 19 and 20 in chapter 7.2 of Elementary Linear Algebra.

For a symmetric matrix we know that eigenvectors that live in distinct eigenspaces are orthogonal. So in exercise 20 we can conclude that no such matrix exists because \mathbf{x}_2 and \mathbf{x}_3 are not orthogonal.

In exercise 19, they are orthogonal, and so if we normalize we get an orthonormal basis of eigenvectors. If we let P be the matrix with these as columns and D be the diagonal

matrix with the eigenvalues on the diagonal, then $A = PDP^T$ will be a symmetrix matrix with the correct eigenvectors and values.

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ -1/\sqrt{2} & 0 & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 7 \end{bmatrix} \begin{bmatrix} 0 & 1/\sqrt{2} & -1/\sqrt{2} \\ 1 & 0 & 0 \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$
$$= \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 4 \\ 0 & 4 & 3 \end{bmatrix}$$

Chapter 7.3 - Quadratic forms

Exercise 5 Do exercise 11 and 12 in chapter 7.3 of Elementary Linear Algebra.

In both 11 and 12, (a) is an ellipse, (b) is a hyperbola, (c) is a parabola, and (d) is a circle.

Exercise 6 Do exercise 15 in chapter 7.3 of Elementary Linear Algebra.

We are given the equation $11x^2 + 24xy + 4y^2 - 15 = 0$. We can rewrite this as an equation involving a quadratic forms by

$$\mathbf{x}^T A \mathbf{x} = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 11 & 12 \\ 12 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 15$$

The eigenvalues of this matrix are roots of $(\lambda - 11)(\lambda - 4) - 12^2 = \lambda^2 - 15\lambda - 100$, thus they equal 20 and -5. By row reducing $(\lambda I - A)$ we find the eigenvectors $\begin{bmatrix} 4/3\\1 \end{bmatrix}$ and $\begin{bmatrix} -3/4\\1 \end{bmatrix}$. Normalizing these we get the change of basis matrix

$$P = \begin{bmatrix} 4/5 & -3/5\\ 3/5 & 4/5 \end{bmatrix}$$

Changing coordinates to $\begin{bmatrix} \hat{x} \\ \hat{y} \end{bmatrix} = P^T \begin{bmatrix} x \\ y \end{bmatrix}$ we get $20\hat{x}^2 - 5\hat{y}^2 = 15$, which we recognize as a hyperbola since it is a difference of squares.

The angle of rotation is the angle θ such that

$$P = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}$$

In this case, this will be $\theta = \arccos(4/5) \approx 0.64 \approx 37^{\circ}$.

A plot of the curve is shown in red below

