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Exercise set 10

Compulsory exercises

Hand in your solutions to these exercises. All answers must be justified.

Chapter 5.1 - Eigenvalues and eigenvectors

Exercise 1 Do exercise 1 in chapter 5.1 of Elementary Linear Algebra.

Ax =

[
1 2
3 2

] [
1
−1

]
=

[
−1
1

]
= (−1)

[
1
−1

]
So x is an eigenvector with eigenvalue -1.

Exercise 2 Do exercise 5a in chapter 5.1 of Elementary Linear Algebra.

The charcteristic equation is det(λI−A) = 0, which gives us λ2−4λ−5 = 0. The solutions
to this equation are λ = −1 and λ = 5, so the eigenvalues of A are -1 and 5. To find the
bases for the eigenspaces we rowreduce λI −A:

λ = −1:
[
−2 −4
−2 −4

]
∼
[
1 2
0 0

]
So the eigenspace associated to -1 consists of all vectors where x1+2x2 = 0 and x2 is free.

A bais is given by
{[
−2
1

]}
.

We do a similar calculation for λ = 5:

λ = 5:

[
4 −4
−2 2

]
∼
[
1 −1
0 0

]

Which gives us basis
{[

1
1

]}
.

Exercise 3 Do exercise 25 in chapter 5.1 of Elementary Linear Algebra.

(a) Since the characteristic polynomial has degree 1 + 2 + 3 = 6, the matrix is 6× 6.
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(b) Since 0 is not a root of the characteristic polynomial, A does not have 0 as an
eigenvalue. That means that the nullspace N(A) is {0}, which for a square matrix
is equivalent to being invertible. So A is invertible.

(c) A matrix has one eigenspace for each eigenvalue. From the characteristic polynomial
we see that we have 3 eigenvalues, and thus 3 eigenspaces.

Exercise 4 Do exercise 33 in chapter 5.1 of Elementary Linear Algebra.

We have that x is an eigenvector with eigenvalue λ. That means that Ax = λx. If we
multiply both sides by A−1 we get:

A−1Ax = A−1λx

x = A−1λx

x = λA−1x

1

λ
x = A−1x

This is exactly the statement that x is an eigenvector of A−1 with eigenvalue 1/λ, which
is what we wanted to prove.

Chapter 5.2 - Diagonalization

Exercise 5 Let A be the matrix in exercise 5a in chapter 5.1, considered earlier in this
exercise set. Diagonalize A, i.e. find an invertible matrix P and a diagonal matrix D such
that A = PDP−1. Verify your solution by checking that AP = PD.

Earlier we found the eigenvalues of A to be −1 and 5 and we found corresponding basisvec-

tors
[
−2
1

]
and

[
1
1

]
. This gives us that

P =

[
−2 1
1 1

]
, D =

[
−1 0
0 5

]
We verify this by computing AP and PD:

AP =

[
2 5
−1 5

]
= PD

Exercise 6 In example 6 on page 307 it is shown that if A = PDP−1 then Ak = PDkP−1.
Use this to compute A5, where A is the matrix from the previous exercise.

So A5 = PD5P−1. We first compute P−1 to be

P−1 =

[
−1

3
1
3

1
3

2
3

]
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Then we can compute A5 as

A5 = PD5P−1 =

[
−2 1
1 1

] [
(−1)5 0
0 55

] [
−1

3
1
3

1
3

2
3

]
=

[
−2 1
1 1

] [
−1 0
0 3125

] [
−1

3
1
3

1
3

2
3

]
=

[
2 3125
−1 3125

] [
−1

3
1
3

1
3

2
3

]
=

[
1041 2084
1042 2083

]

Exercise 7 Do exercise 10 in chapter 5.2 of Elementary Linear Algebra.

(a) The characteristic polynomial of A is det(λI−A) = (λ−3)(λ−2)2. So the eigenvalues
are 3 and 2.

(b) For λ = 3 we have that

3I −A =

0 0 0
0 1 0
0 −1 1

 ∼
0 0 0
0 1 0
0 0 1


So 3I −A has rank 2.

For λ = 2 we have

2I −A =

−1 0 0
0 0 0
0 −1 0

 ∼
1 0 0
0 1 0
0 0 0


So 2I −A also has rank 2.

(c) For A to be diagonalizable we need to find 3 linearly independent eigenvectors. We
saw that λI − A has rank 2. Using the Rank-Nullity theorem this means that the
null space of λI−A is 3−2 = 1-dimensional. The null space of λI−A is exactly the
eigenspace of λ, so we have two 1-dimensional eigenspaces. Therefore we can have
at most 2 linearly independent eigenvectors, and A is not diagonalizable.
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