

MA1201 Linear Algebra and Geometry

Exercise set 10

Compulsory exercises

Hand in your solutions to these exercises. All answers must be justified.

Chapter 5.1 - Eigenvalues and eigenvectors

Exercise 1 Do exercise 1 in chapter 5.1 of Elementary Linear Algebra.

$$A\mathbf{x} = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} = (-1) \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

So \mathbf{x} is an eigenvector with eigenvalue -1.

Exercise 2 Do exercise 5a in chapter 5.1 of Elementary Linear Algebra.

The charcteristic equation is $\det(\lambda I - A) = 0$, which gives us $\lambda^2 - 4\lambda - 5 = 0$. The solutions to this equation are $\lambda = -1$ and $\lambda = 5$, so the eigenvalues of A are -1 and 5. To find the bases for the eigenspaces we rowreduce $\lambda I - A$:

$$\lambda = -1 \colon \begin{bmatrix} -2 & -4 \\ -2 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$$

So the eigenspace associated to -1 consists of all vectors where $x_1 + 2x_2 = 0$ and x_2 is free. A bais is given by $\left\{ \begin{bmatrix} -2\\1 \end{bmatrix} \right\}$.

We do a similar calculation for $\lambda = 5$:

$$\lambda = 5: \quad \begin{bmatrix} 4 & -4 \\ -2 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$$

Which gives us basis $\left\{ \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$.

Exercise 3 Do exercise 25 in chapter 5.1 of Elementary Linear Algebra.

(a) Since the characteristic polynomial has degree 1 + 2 + 3 = 6, the matrix is 6×6 .

- (b) Since 0 is not a root of the characteristic polynomial, A does not have 0 as an eigenvalue. That means that the nullspace N(A) is $\{\mathbf{0}\}$, which for a square matrix is equivalent to being invertible. So A is invertible.
- (c) A matrix has one eigenspace for each eigenvalue. From the characteristic polynomial we see that we have 3 eigenvalues, and thus 3 eigenspaces.

Exercise 4 Do exercise 33 in chapter 5.1 of Elementary Linear Algebra.

We have that \mathbf{x} is an eigenvector with eigenvalue λ . That means that $A\mathbf{x} = \lambda \mathbf{x}$. If we multiply both sides by A^{-1} we get:

$$A^{-1}A\mathbf{x} = A^{-1}\lambda\mathbf{x}$$
$$\mathbf{x} = A^{-1}\lambda\mathbf{x}$$
$$\mathbf{x} = \lambda A^{-1}\mathbf{x}$$
$$\frac{1}{\lambda}\mathbf{x} = A^{-1}\mathbf{x}$$

This is exactly the statement that \mathbf{x} is an eigenvector of A^{-1} with eigenvalue $1/\lambda$, which is what we wanted to prove.

Chapter 5.2 - Diagonalization

Exercise 5 Let A be the matrix in exercise 5a in chapter 5.1, considered earlier in this exercise set. Diagonalize A, i.e. find an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$. Verify your solution by checking that AP = PD.

Earlier we found the eigenvalues of A to be -1 and 5 and we found corresponding basisvectors $\begin{bmatrix} -2\\1 \end{bmatrix}$ and $\begin{bmatrix} 1\\1 \end{bmatrix}$. This gives us that

$$P = \begin{bmatrix} -2 & 1 \\ 1 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} -1 & 0 \\ 0 & 5 \end{bmatrix}$$

We verify this by computing AP and PD:

$$AP = \begin{bmatrix} 2 & 5\\ -1 & 5 \end{bmatrix} = PD$$

Exercise 6 In example 6 on page 307 it is shown that if $A = PDP^{-1}$ then $A^k = PD^kP^{-1}$. Use this to compute A^5 , where A is the matrix from the previous exercise.

So $A^5 = PD^5P^{-1}$. We first compute P^{-1} to be

$$P^{-1} = \begin{bmatrix} -\frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}$$

Then we can compute A^5 as

$$A^{5} = PD^{5}P^{-1} = \begin{bmatrix} -2 & 1\\ 1 & 1 \end{bmatrix} \begin{bmatrix} (-1)^{5} & 0\\ 0 & 5^{5} \end{bmatrix} \begin{bmatrix} -\frac{1}{3} & \frac{1}{3}\\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}$$
$$= \begin{bmatrix} -2 & 1\\ 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0\\ 0 & 3125 \end{bmatrix} \begin{bmatrix} -\frac{1}{3} & \frac{1}{3}\\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 3125\\ -1 & 3125 \end{bmatrix} \begin{bmatrix} -\frac{1}{3} & \frac{1}{3}\\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}$$
$$= \begin{bmatrix} 1041 & 2084\\ 1042 & 2083 \end{bmatrix}$$

Exercise 7 Do exercise 10 in chapter 5.2 of Elementary Linear Algebra.

- (a) The characteristic polynomial of A is $\det(\lambda I A) = (\lambda 3)(\lambda 2)^2$. So the eigenvalues are 3 and 2.
- (b) For $\lambda = 3$ we have that

$$3I - A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \sim \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

So 3I - A has rank 2.

For $\lambda = 2$ we have

$$2I - A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So 2I - A also has rank 2.

(c) For A to be diagonalizable we need to find 3 linearly independent eigenvectors. We saw that $\lambda I - A$ has rank 2. Using the Rank-Nullity theorem this means that the null space of $\lambda I - A$ is 3-2 = 1-dimensional. The null space of $\lambda I - A$ is exactly the eigenspace of λ , so we have two 1-dimensional eigenspaces. Therefore we can have at most 2 linearly independent eigenvectors, and A is not diagonalizable.