MA1201 Linear Algebra and Geometry

Compulsory exercises

Hand in your solutions to these exercises. All answers must be justified.

Chapter 5.1-Eigenvalues and eigenvectors

Exercise 1 Do exercise 1 in chapter 5.1 of Elementary Linear Algebra.

$$
A \mathbf{x}=\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=(-1)\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

So x is an eigenvector with eigenvalue -1 .
Exercise 2 Do exercise 5a in chapter 5.1 of Elementary Linear Algebra.
The charcteristic equation is $\operatorname{det}(\lambda I-A)=0$, which gives us $\lambda^{2}-4 \lambda-5=0$. The solutions to this equation are $\lambda=-1$ and $\lambda=5$, so the eigenvalues of A are -1 and 5 . To find the bases for the eigenspaces we rowreduce $\lambda I-A$:

$$
\lambda=-1: \quad\left[\begin{array}{ll}
-2 & -4 \\
-2 & -4
\end{array}\right] \sim\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right]
$$

So the eigenspace associated to -1 consists of all vectors where $x_{1}+2 x_{2}=0$ and x_{2} is free. A bais is given by $\left\{\left[\begin{array}{c}-2 \\ 1\end{array}\right]\right\}$.

We do a similar calculation for $\lambda=5$:

$$
\lambda=5: \quad\left[\begin{array}{cc}
4 & -4 \\
-2 & 2
\end{array}\right] \sim\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right]
$$

Which gives us basis $\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$.
Exercise 3 Do exercise 25 in chapter 5.1 of Elementary Linear Algebra.
(a) Since the characteristic polynomial has degree $1+2+3=6$, the matrix is 6×6.
(b) Since 0 is not a root of the characteristic polynomial, A does not have 0 as an eigenvalue. That means that the nullspace $N(A)$ is $\{\mathbf{0}\}$, which for a square matrix is equivalent to being invertible. So A is invertible.
(c) A matrix has one eigenspace for each eigenvalue. From the characteristic polynomial we see that we have 3 eigenvalues, and thus 3 eigenspaces.

Exercise 4 Do exercise 33 in chapter 5.1 of Elementary Linear Algebra.
We have that \mathbf{x} is an eigenvector with eigenvalue λ. That means that $A \mathbf{x}=\lambda \mathbf{x}$. If we multiply both sides by A^{-1} we get:

$$
\begin{aligned}
A^{-1} A \mathrm{x} & =A^{-1} \lambda \mathrm{x} \\
\mathrm{x} & =A^{-1} \lambda \mathrm{x} \\
\mathrm{x} & =\lambda A^{-1} \mathrm{x} \\
\frac{1}{\lambda} \mathrm{x} & =A^{-1} \mathrm{x}
\end{aligned}
$$

This is exactly the statement that x is an eigenvector of A^{-1} with eigenvalue $1 / \lambda$, which is what we wanted to prove.

Chapter 5.2 - Diagonalization

Exercise 5 Let A be the matrix in exercise 5a in chapter 5.1, considered earlier in this exercise set. Diagonalize A, i.e. find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$. Verify your solution by checking that $A P=P D$.

Earlier we found the eigenvalues of A to be -1 and 5 and we found corresponding basisvectors $\left[\begin{array}{c}-2 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 1\end{array}\right]$. This gives us that

$$
P=\left[\begin{array}{cc}
-2 & 1 \\
1 & 1
\end{array}\right], \quad D=\left[\begin{array}{cc}
-1 & 0 \\
0 & 5
\end{array}\right]
$$

We verify this by computing $A P$ and $P D$:

$$
A P=\left[\begin{array}{cc}
2 & 5 \\
-1 & 5
\end{array}\right]=P D
$$

Exercise 6 In example 6 on page 307 it is shown that if $A=P D P^{-1}$ then $A^{k}=P D^{k} P^{-1}$. Use this to compute A^{5}, where A is the matrix from the previous exercise.

So $A^{5}=P D^{5} P^{-1}$. We first compute P^{-1} to be

$$
P^{-1}=\left[\begin{array}{cc}
-\frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{2}{3}
\end{array}\right]
$$

Then we can compute A^{5} as

$$
\begin{aligned}
A^{5}=P D^{5} P^{-1} & =\left[\begin{array}{cc}
-2 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
(-1)^{5} & 0 \\
0 & 5^{5}
\end{array}\right]\left[\begin{array}{cc}
-\frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{2}{3}
\end{array}\right] \\
& =\left[\begin{array}{cc}
-2 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & 3125
\end{array}\right]\left[\begin{array}{cc}
-\frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{2}{3}
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 & 3125 \\
-1 & 3125
\end{array}\right]\left[\begin{array}{cc}
-\frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{2}{3}
\end{array}\right] \\
& =\left[\begin{array}{cc}
1041 & 2084 \\
1042 & 2083
\end{array}\right]
\end{aligned}
$$

Exercise 7 Do exercise 10 in chapter 5.2 of Elementary Linear Algebra.
(a) The characteristic polynomial of A is $\operatorname{det}(\lambda I-A)=(\lambda-3)(\lambda-2)^{2}$. So the eigenvalues are 3 and 2 .
(b) For $\lambda=3$ we have that

$$
3 I-A=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right] \sim\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

So $3 I-A$ has rank 2 .
For $\lambda=2$ we have

$$
2 I-A=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 0 \\
0 & -1 & 0
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

So $2 I-A$ also has rank 2 .
(c) For A to be diagonalizable we need to find 3 linearly independent eigenvectors. We saw that $\lambda I-A$ has rank 2. Using the Rank-Nullity theorem this means that the null space of $\lambda I-A$ is $3-2=1$-dimensional. The null space of $\lambda I-A$ is exactly the eigenspace of λ, so we have two 1 -dimensional eigenspaces. Therefore we can have at most 2 linearly independent eigenvectors, and A is not diagonalizable.

