Compulsory exercises

Hand in your solutions to these exercises. All answers must be justified.

Chapter 4.5-Coordinates

Exercise 1 Do exercise 11 in chapter 4.5 of Elementary Linear Algebra.
(a) We set up the augmented matrix and rowreduce:

$$
\left[\begin{array}{ccc}
2 & 3 & 1 \\
-4 & 8 & 1
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & \frac{5}{28} \\
0 & 1 & \frac{3}{14}
\end{array}\right]
$$

$$
\text { So }[\mathbf{w}]_{S}=\left[\begin{array}{c}
\frac{5}{28} \\
\frac{3}{14}
\end{array}\right] \text {. }
$$

(b) We set up the augmented matrix and rowreduce:

$$
\left[\begin{array}{ccc}
1 & 0 & a \\
1 & 2 & b
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & a \\
0 & 1 & \frac{b-a}{2}
\end{array}\right]
$$

$$
\text { So }[\mathbf{w}]_{S}=\left[\begin{array}{c}
a \\
\frac{b-a}{2}
\end{array}\right] \text {. }
$$

Exercise 2 Do exercise 13a in chapter 4.5 of Elementary Linear Algebra.
We set up the augmented matrix and rowreduce:

$$
\begin{array}{r}
{\left[\begin{array}{cccc}
1 & 2 & 3 & 2 \\
0 & 2 & 3 & -1 \\
0 & 0 & 3 & 3
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 1
\end{array}\right]} \\
{[\mathbf{v}]_{S}=\left[\begin{array}{c}
3 \\
-2 \\
1
\end{array}\right]}
\end{array}
$$

Chapter 4.6 - Dimension

Exercise 3 Do exercise 7 in chapter 4.6 of Elementary Linear Algebra.
(a) $3 x-2 y+5 z=0$ has solutions $x=\frac{2}{3} y-\frac{5}{3} z$, which in vectorform we can write as

$$
\left[\begin{array}{c}
\frac{2}{3} y-\frac{5}{3} z \\
y \\
z
\end{array}\right]=y\left[\begin{array}{l}
\frac{2}{3} \\
1 \\
0
\end{array}\right]+z\left[\begin{array}{c}
-\frac{5}{3} \\
0 \\
1
\end{array}\right]
$$

Therefore the space is 2 -dimensional with a basis given by

$$
\left\{\left[\begin{array}{l}
\frac{2}{3} \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-\frac{5}{3} \\
0 \\
1
\end{array}\right]\right\}
$$

(b) $x-y=0$ has solutions $x=y$, which in vectorform we can write as

$$
\left[\begin{array}{l}
y \\
y \\
z
\end{array}\right]=y\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+z\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Therefore the space is 2 -dimensional with a basis given by

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

(c) The line is described as all vectors on the form

$$
\left[\begin{array}{c}
2 t \\
-t \\
4 t
\end{array}\right]=t\left[\begin{array}{c}
2 \\
-1 \\
4
\end{array}\right]
$$

Therefore the space is 1-dimensional with a basis given by

$$
\left\{\left[\begin{array}{c}
2 \\
-1 \\
4
\end{array}\right]\right\}
$$

(d) The vectors can be written as

$$
\left[\begin{array}{c}
a \\
a+c \\
c
\end{array}\right]=a\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+c\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

Therefore the space is 2 -dimensional with a basis given by

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\}
$$

Exercise 4 Do exercise 9 in chapter 4.6 of Elementary Linear Algebra (You may assume $n=3$ if you prefer).

1. Let $E_{i j}$ be the $n \times n$-matrix which is 1 in coordinate (i, j) and 0 elsewhere. Then a basis for the diagonal matrices is $\left\{E_{i i}\right\}_{i=1}^{n}$, thus the space is n-dimensional.
2. A basis for the symmetric matrices is $\left\{E_{i j}+E_{j i}\right\}_{j \geq i}$ so the space is $\frac{n^{2}+n}{2}$-dimensional.
3. A basis for the upper triangular matrices is $\left\{E_{i j}\right\}_{j \geq i}$ so the space is $\frac{n^{2}+n}{2}$-dimensional.

Chapter 4.7 - Change of basis

Exercise 5 Do exercise 1 in chapter 4.7 of Elementary Linear Algebra.
(a) We set up the augmented matrix and reduc:

$$
\left[\begin{array}{cccc}
2 & 4 & 1 & -1 \\
2 & -1 & 3 & -1
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & \frac{13}{10} & \frac{-1}{2} \\
0 & 1 & \frac{-2}{5} & 0
\end{array}\right]
$$

So the transition matrix from B^{\prime} to B is

$$
\left[\begin{array}{cc}
\frac{13}{10} & \frac{-1}{2} \\
\frac{-2}{5} & 0
\end{array}\right]
$$

(b) The transition matrix from B to B^{\prime} will be the inverse of the one we just computed, thus equal to

$$
\frac{1}{-1 / 5}\left[\begin{array}{cc}
0 & \frac{1}{2} \tag{1}\\
\frac{2}{5} & \frac{13}{10}
\end{array}\right]=\left[\begin{array}{cc}
0 & \frac{-5}{2} \\
-2 & \frac{-13}{2}
\end{array}\right]
$$

(c) We set up the augmented matrix and reduce:

$$
\left.\begin{array}{r}
{\left[\begin{array}{ccc}
2 & 4 & 3 \\
2 & -1 & -5
\end{array}\right] \sim}
\end{array} \begin{array}{ccc}
1 & 0 & -\frac{17}{10} \\
0 & 1 & \frac{8}{5}
\end{array}\right] .
$$

To compute $[\mathbf{w}]_{B^{\prime}}$ we multply by the transition matrix

$$
[\mathbf{w}]_{B^{\prime}}=\left[\begin{array}{cc}
0 & -\frac{5}{2} \\
-2 & -\frac{13}{2}
\end{array}\right]\left[\begin{array}{c}
-\frac{17}{10} \\
\frac{8}{5}
\end{array}\right]=\left[\begin{array}{c}
-4 \\
-7
\end{array}\right]
$$

(d) We can compute $[\mathbf{w}]_{B^{\prime}}$ directly by setting up the augmented matrix and reducing:

$$
\left[\begin{array}{ccc}
1 & -1 & 3 \\
3 & -1 & -5
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & -4 \\
0 & 1 & -7
\end{array}\right]
$$

Which verifies that our answer was correct.

Exercise 6 Do exercise 5 in chapter 4.7 of Elementary Linear Algebra.
(a) For something to be a basis it must span V and be linearly independent. We first show linear independence:

Assume $a \mathbf{g}_{1}+b \mathbf{g}_{2}=0$. That means $2 a \sin x+a \cos x+3 b \cos x=0$. If we set $x=\frac{\pi}{2}$ then we get $2 a=0$, which means $a=0$. Then if we set $x=0$ we get $3 b=0$ which means $b=0$. So $a=b=0$ is the only solution, and they are linearly independent.

Since they are two linearly independence vectors, their span is 2-dimensional. And since V is spanned by 2 vectors it must be at most 2 -dimensional. Thus \mathbf{g}_{1} and \mathbf{g}_{2} span all of V.

Since they are linearly independent and span V, they form a basis.
(b) The transition matrix has columns given by the coordinate vectors

$$
P_{B^{\prime} \rightarrow B}=\left[\left[\mathbf{g}_{\mathbf{1}}\right]_{B}\left[\mathbf{g}_{2}\right]_{B}\right]=\left[\begin{array}{ll}
2 & 0 \\
1 & 3
\end{array}\right]
$$

(c)

$$
P_{B \rightarrow B^{\prime}}=P_{B^{\prime} \rightarrow B}^{-1}=\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
-\frac{1}{6} & \frac{1}{3}
\end{array}\right]
$$

(d)

$$
[\mathbf{h}]_{B}=\left[\begin{array}{c}
2 \\
-5
\end{array}\right], \quad[\mathbf{h}]_{B^{\prime}}=P_{B \rightarrow B^{\prime}}[\mathbf{h}]_{B}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right]
$$

(e) We want to solve $\mathbf{h}=a \mathbf{g}_{1}+b \mathbf{g}_{2}$. We can set up this as a system of equations and rowreduce:

$$
\left[\begin{array}{ccc}
2 & 0 & 2 \\
1 & 3 & -5
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -2
\end{array}\right]
$$

This verifies that our answer is correct.

