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Exercise set 08

Compulsory exercises

Hand in your solutions to these exercises. All answers must be justified.

Chapter 4.5 - Coordinates

Exercise 1 Do exercise 11 in chapter 4.5 of Elementary Linear Algebra.

(a) We set up the augmented matrix and rowreduce:[
2 3 1
−4 8 1

]
∼
[
1 0 5

28
0 1 3

14

]

So [w]S =

[
5
28
3
14

]
.

(b) We set up the augmented matrix and rowreduce:[
1 0 a
1 2 b

]
∼
[
1 0 a

0 1 b−a
2

]

So [w]S =

[
a
b−a
2

]
.

Exercise 2 Do exercise 13a in chapter 4.5 of Elementary Linear Algebra.

We set up the augmented matrix and rowreduce:1 2 3 2
0 2 3 −1
0 0 3 3

 ∼
1 0 0 3
0 1 0 −2
0 0 1 1


[v]S =

 3
−2
1
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Chapter 4.6 - Dimension

Exercise 3 Do exercise 7 in chapter 4.6 of Elementary Linear Algebra.

(a) 3x− 2y + 5z = 0 has solutions x = 2
3y −

5
3z, which in vectorform we can write as2

3y −
5
3z

y
z

 = y

2
3
1
0

+ z

−5
3
0
1


Therefore the space is 2-dimensional with a basis given by

2
3
1
0

 ,

−5
3
0
1


(b) x− y = 0 has solutions x = y, which in vectorform we can write asyy

z

 = y

11
0

+ z

00
1


Therefore the space is 2-dimensional with a basis given by

11
0

 ,

00
1


(c) The line is described as all vectors on the form2t−t

4t

 = t

 2
−1
4


Therefore the space is 1-dimensional with a basis given by

 2
−1
4


(d) The vectors can be written as a

a+ c
c

 = a

11
0

+ c

01
1


Therefore the space is 2-dimensional with a basis given by

11
0

 ,

01
1
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Exercise 4 Do exercise 9 in chapter 4.6 of Elementary Linear Algebra (You may assume
n = 3 if you prefer).

1. Let Eij be the n× n-matrix which is 1 in coordinate (i, j) and 0 elsewhere. Then a
basis for the diagonal matrices is {Eii}ni=1, thus the space is n-dimensional.

2. A basis for the symmetric matrices is {Eij+Eji}j≥i so the space is n
2+n
2 -dimensional.

3. A basis for the upper triangular matrices is {Eij}j≥i so the space is n
2+n
2 -dimensional.

Chapter 4.7 - Change of basis

Exercise 5 Do exercise 1 in chapter 4.7 of Elementary Linear Algebra.

(a) We set up the augmented matrix and reduc:[
2 4 1 −1
2 −1 3 −1

]
∼
[
1 0 13

10
−1
2

0 1 −2
5 0

]
So the transition matrix from B′ to B is[

13
10

−1
2

−2
5 0

]

(b) The transition matrix from B to B′ will be the inverse of the one we just computed,
thus equal to

1

−1/5

[
0 1

2
2
5

13
10

]
=

[
0 −5

2
−2 −13

2

]
(1)

(c) We set up the augmented matrix and reduce:[
2 4 3
2 −1 −5

]
∼
[
1 0 −17

10
0 1 8

5

]
[w]B =

[
−17

10
8
5

]
To compute [w]B′ we multply by the transition matrix

[w]B′ =

[
0 −5

2
−2 −13

2

] [
−17

10
8
5

]
=

[
−4
−7

]
(d) We can compute [w]B′ directly by setting up the augmented matrix and reducing:[

1 −1 3
3 −1 −5

]
∼
[
1 0 −4
0 1 −7

]
Which verifies that our answer was correct.
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Exercise 6 Do exercise 5 in chapter 4.7 of Elementary Linear Algebra.

(a) For something to be a basis it must span V and be linearly independent. We first
show linear independence:

Assume ag1 + bg2 = 0. That means 2a sinx+ a cosx+ 3b cosx = 0. If we set x = π
2

then we get 2a = 0, which means a = 0. Then if we set x = 0 we get 3b = 0 which
means b = 0. So a = b = 0 is the only solution, and they are linearly independent.

Since they are two linearly independence vectors, their span is 2-dimensional. And
since V is spanned by 2 vectors it must be at most 2-dimensional. Thus g1 and g2
span all of V .

Since they are linearly independent and span V , they form a basis.

(b) The transition matrix has columns given by the coordinate vectors

PB′→B =
[
[g1]B[g2]B

]
=

[
2 0
1 3

]
(c)

PB→B′ = P−1B′→B =

[
1
2 0
−1

6
1
3

]
(d)

[h]B =

[
2
−5

]
, [h]B′ = PB→B′ [h]B =

[
1
−2

]
(e) We want to solve h = ag1 + bg2. We can set up this as a system of equations and

rowreduce: [
2 0 2
1 3 −5

]
∼
[
1 0 1
0 1 −2

]
This verifies that our answer is correct.
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