Compulsory exercises

Hand in your solutions to these exercises. All answers must be justified.

Chapter 3.5-Cross product

Exercise 1 Do exercise 13 in chapter 3.5 of Elementary Linear Algebra.
The triangle is spanned by $A-C=(3,-2)$ and $B-C=(4,2)$. The area of a triangle is half that of the associated parallellogram thus the area is

$$
\left|\operatorname{det}\left(\left[\begin{array}{cc}
3 & -2 \\
4 & 2
\end{array}\right]\right)\right|=14
$$

Exercise 2 Do exercise 21 in chapter 3.5 of Elementary Linear Algebra.

$$
\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=\operatorname{det}\left(\left[\begin{array}{ccc}
-2 & 0 & 6 \\
1 & -3 & 1 \\
-5 & -1 & 1
\end{array}\right]\right)=-92
$$

Chapter 4.1 - Real vector spaces

Here are the vector space axioms as listed on page 203.

1. If \mathbf{u} and \mathbf{v} are in V, then $\mathbf{u}+\mathbf{v} \in V$.
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
4. There exists an object in V, called the zero vector, that is denoted by $\mathbf{0}$ and has the property that $\mathbf{0}+\mathbf{u}=\mathbf{u}+\mathbf{0}=\mathbf{u}$ for all \mathbf{u} in V.
5. For each \mathbf{u} in V, there is an object $-\mathbf{u}$ in V, called a negative of \mathbf{u}, such that $\mathbf{u}+(-\mathbf{u})=(-\mathbf{u})+\mathbf{u}=\mathbf{0}$.
6. If k is any scalar and $\mathbf{u} \in V$, then $k \mathbf{u} \in V$.
7. $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$
8. $(k+m) \mathbf{u}=k \mathbf{u}+m \mathbf{u}$
9. $k(m \mathbf{u})=(k m)(\mathbf{u})$
10. $1 \mathbf{u}=\mathbf{u}$

Exercise 3 Do exercise 3-9 in chapter 4.1 of Elementary Linear Algebra.
$3,4,6$, and 9 are vector spaces. In exercise 5 axiom 5 and 6 fails. In exercise 7 axiom 8 fails. In exercise 8 axiom 1,4 , and 6 fails, and axiom 5 is illdefined without axiom 4 .

Chapter 4.2-Subspaces

Exercise 4 Do exercise 5 in chapter 4.2 of Elementary Linear Algebra.
(a) Let $p(x)=a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ and $q(x)=b_{1} x+b_{2} x^{2}+b_{3} x^{3}$ be polynomials in P_{3} with constant term 0 , and let $k \in \mathbb{R}$ be a scalar. Then $p(x)+q(x)=\left(a_{1}+b_{1}\right) x+$ $\left(a_{2}+b_{2}\right) x^{2}+\left(a_{3}+b_{3}\right) x^{3}$ and $k p(x)=k a_{1} x+k a_{2} x^{2}+k a_{3} x^{3}$ also have constant term 0 . Thus the set of such polynomials is a subspace.
(b) Let $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ and $q(x)=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}$ be such that

$$
\sum_{i=0}^{3} a_{i}=0=\sum_{i=0}^{3} b_{i}
$$

and let $k \in \mathbb{R}$ be a scalar. Then $p(x)+q(x)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\left(a_{2}+b_{2}\right) x^{2}+$ $\left(a_{3}+b_{3}\right) x^{3}$ satisfies

$$
\sum_{i=0}^{3}\left(a_{i}+b_{i}\right)=\sum_{i=0}^{3} a_{i}+\sum_{i=0}^{3} b_{i}=0
$$

and $k p(x)$ satisfies

$$
\sum_{i=0}^{3} k a_{i}=k \sum_{i=0}^{3} a_{i}=0
$$

So the set of such polynomials is a subspace.

