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Exercise set 06

Compulsory exercises

Hand in your solutions to these exercises. All answers must be justified.

Chapter 3.5 - Cross product

Exercise 1 Do exercise 13 in chapter 3.5 of Elementary Linear Algebra.

The triangle is spanned by A− C = (3,−2) and B − C = (4, 2). The area of a triangle is
half that of the associated parallellogram thus the area is∣∣∣∣det([3 −2

4 2

])∣∣∣∣ = 14

Exercise 2 Do exercise 21 in chapter 3.5 of Elementary Linear Algebra.

u · (v ×w) = det

−2 0 6
1 −3 1
−5 −1 1

 = −92

Chapter 4.1 - Real vector spaces

Here are the vector space axioms as listed on page 203.

1. If u and v are in V , then u+ v ∈ V .

2. u+ v = v + u

3. (u+ v) +w = u+ (v +w)

4. There exists an object in V , called the zero vector, that is denoted by 0 and has the
property that 0+ u = u+ 0 = u for all u in V .

5. For each u in V , there is an object −u in V , called a negative of u, such that
u+ (−u) = (−u) + u = 0.

6. If k is any scalar and u ∈ V , then ku ∈ V .
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7. k(u+ v) = ku+ kv

8. (k +m)u = ku+mu

9. k(mu) = (km)(u)

10. 1u = u

Exercise 3 Do exercise 3-9 in chapter 4.1 of Elementary Linear Algebra.

3, 4, 6, and 9 are vector spaces. In exercise 5 axiom 5 and 6 fails. In exercise 7 axiom 8
fails. In exercise 8 axiom 1, 4, and 6 fails, and axiom 5 is illdefined without axiom 4.

Chapter 4.2 - Subspaces

Exercise 4 Do exercise 5 in chapter 4.2 of Elementary Linear Algebra.

(a) Let p(x) = a1x + a2x
2 + a3x

3 and q(x) = b1x + b2x
2 + b3x

3 be polynomials in P3

with constant term 0, and let k ∈ R be a scalar. Then p(x) + q(x) = (a1 + b1)x +
(a2 + b2)x

2 +(a3 + b3)x
3 and kp(x) = ka1x+ ka2x

2 + ka3x
3 also have constant term

0. Thus the set of such polynomials is a subspace.

(b) Let p(x) = a0 + a1x+ a2x
2 + a3x

3 and q(x) = b0 + b1x+ b2x
2 + b3x

3 be such that

3∑
i=0

ai = 0 =

3∑
i=0

bi,

and let k ∈ R be a scalar. Then p(x) + q(x) = (a0 + b0) + (a1 + b1)x+ (a2 + b2)x
2 +

(a3 + b3)x
3 satisfies

3∑
i=0

(ai + bi) =
3∑

i=0

ai +
3∑

i=0

bi = 0,

and kp(x) satisfies
3∑

i=0

kai = k
3∑

i=0

ai = 0.

So the set of such polynomials is a subspace.
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