MA1201 Linear Algebra and Geometry

Compulsory exercises

Hand in your solutions to these exercises. All answers must be justified.

Chapter 1.5

Exercise 1 Exercise 2 in chapter 1.5 of Elementary Linear Algebra.
(a) Yes, we have scaled the second row by $\sqrt{3}$.
(b) Yes, we have swapped row 1 and 3.
(c) Yes, we have added 9 times row 3 to row 2 .
(d) No, this cannot be achieved with a single row operation. We need at least two.

Exercise 2 Exercise 3 in chapter 1.5 of Elementary Linear Algebra.
(a) Add 3 times the second row to the first, which corresponds to

$$
\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right]
$$

(b) Scale the first row by $-\frac{1}{7}$, which corresponds to

$$
\left[\begin{array}{ccc}
-\frac{1}{7} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(c) Add 5 times the first row to the third, which corresponds to

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
5 & 0 & 1
\end{array}\right]
$$

(d) Swap the first and third row, which corresponds to

$$
\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Exercise 3 Exercise 19 in chapter 1.5 of Elementary Linear Algebra.
(a) The inverse is

$$
\left[\begin{array}{cccc}
1 / k_{1} & 0 & 0 & 0 \\
0 & 1 / k_{2} & 0 & 0 \\
0 & 0 & 1 / k_{3} & 0 \\
0 & 0 & 0 & 1 / k_{4}
\end{array}\right]
$$

(b) The inverse is

$$
\left[\begin{array}{cccc}
1 / k & -1 / k & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 / k & -1 / k \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Chapter 1.6

Exercise 4 Exercise 1 in chapter 1.6 of Elementary Linear Algebra.
The coefficient matrix is

$$
A=\left[\begin{array}{ll}
1 & 1 \\
5 & 6
\end{array}\right]
$$

Inverting this we get

$$
A^{-1}=\left[\begin{array}{cc}
6 & -1 \\
-5 & 1
\end{array}\right]
$$

Then the solution is

$$
A^{-1} \mathbf{b}=\left[\begin{array}{cc}
6 & -1 \\
-5 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
9
\end{array}\right]=\left[\begin{array}{c}
3 \\
-1
\end{array}\right]
$$

Exercise 5 Exercise 14 in chapter 1.6 of Elementary Linear Algebra.
We set up the augmented matrix to solve the system.

$$
\left[\begin{array}{ccc}
6 & -4 & b_{1} \\
3 & -2 & b_{2}
\end{array}\right] \sim\left[\begin{array}{ccc}
6 & -4 & b_{1} \\
0 & 0 & b_{2}-\frac{1}{2} b_{1}
\end{array}\right]
$$

From this we see that the only way for this system to be consistent is if $b_{2}-\frac{1}{2} b_{1}=0$. In this case the solution is $x=\frac{1}{6} b_{1}+\frac{2}{3} y$ with y a free variable.

Chapter 1.7

Exercise 6 Exercise 2 in chapter 1.7 of Elementary Linear Algebra. a, c, and d are lower triangular; b and c are upper triangular; c is both, hence diagonal.
a and c are invertible because they have non-zero elements along the diagonal. b and d are not.

Exercise 7 Exercise 3 in chapter 1.7 of Elementary Linear Algebra.

$$
\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
-4 & 1 \\
2 & 5
\end{array}\right]=\left[\begin{array}{cc}
6 & 3 \\
4 & -1 \\
4 & 10
\end{array}\right]
$$

Exercise 8 Exercise 4 in chapter 1.7 of Elementary Linear Algebra.

$$
\left[\begin{array}{ccc}
1 & 2 & -5 \\
-3 & -1 & 0
\end{array}\right]\left[\begin{array}{ccc}
-4 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 2
\end{array}\right]=\left[\begin{array}{ccc}
-4 & 6 & -10 \\
12 & -3 & 0
\end{array}\right]
$$

Exercise 9 Exercise 47 in chapter 1.7 of Elementary Linear Algebra.
We are given that $A=A^{T} A$. Taking the transpose on both sides yields $A^{T}=\left(A^{T} A\right)^{T}=$ $A^{T}\left(A^{T}\right)^{T}=A^{T} A=A$. Thus, $A=A^{T}$ which means that A is symmetric. Plugging this into the original equation we have $A=A^{T} A=A A=A^{2}$, so $A=A^{2}$.

