MA1201 Linear Algebra and Geometry

Glossary

Engelsk	Norsk
norm	norm / lengde / størrelse
unit vector	enhetsvektor
acute angle	spiss vinkel
obtuse angle	stump vinkel

Compulsory exercises

Hand in your solutions to these exercises. All answers must be justified.

Chapter 3.1 - Vectors in \mathbb{R}^{n}

Exercise 1 Exercise 12b in chapter 3.1 of Elementary Linear Algebra.

$$
3(2 \mathbf{u}-\mathbf{v})=6 \mathbf{u}-3 \mathbf{v}=6\left[\begin{array}{c}
1 \\
2 \\
-3 \\
5 \\
0
\end{array}\right]-3\left[\begin{array}{c}
0 \\
4 \\
-1 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
6 \\
12 \\
-18 \\
30 \\
0
\end{array}\right]-\left[\begin{array}{c}
0 \\
12 \\
-3 \\
3 \\
6
\end{array}\right]=\left[\begin{array}{c}
6 \\
0 \\
-15 \\
27 \\
-6
\end{array}\right]
$$

Exercise 2 Exercise 14 in chapter 3.1 of Elementary Linear Algebra.

$$
\begin{aligned}
2 \mathbf{u}-\mathbf{v}+\mathbf{x} & =7 \mathbf{x}+\mathbf{w} \\
6 \mathbf{x} & =2 \mathbf{u}-\mathbf{v}-\mathbf{w} \\
\mathbf{x} & =\frac{1}{3} \mathbf{u}-\frac{1}{6} \mathbf{v}-\frac{1}{6} \mathbf{w} \\
& =\left[\begin{array}{c}
-5 / 6 \\
-1 / 6 \\
-1 / 6 \\
11 / 6 \\
-5 / 6
\end{array}\right]
\end{aligned}
$$

Exercise 3 Exercise 17 in chapter 3.1 of Elementary Linear Algebra.

Looking entrywise at $a \mathbf{u}+b \mathbf{v}=(1,-4,9,18)$ gives us the system of equations

$$
\begin{aligned}
a+2 b & =1 \\
-a+b & =-4 \\
3 a & =9 \\
5 a-3 b & =18
\end{aligned}
$$

When we set up the augmented matrix and row reduce we get

$$
\left[\begin{array}{ccc}
1 & 2 & 1 \\
-1 & 1 & -4 \\
3 & 0 & 9 \\
5 & -3 & 18
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & 1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Which means that the solution is $a=3$ and $b=-1$.

Chapter 3.2 - Dot products

Exercise 4 Exercise 1a in chapter 3.2 of Elementary Linear Algebra.
We calculate that $\|\mathbf{v}\|=\sqrt{2^{2}+2^{2}+2^{2}}=2 \sqrt{3}$. Thus $\frac{1}{2 \sqrt{3}} \mathbf{v}$ is a unit vector pointing in the same direction as \mathbf{v}, and $-\frac{1}{2 \sqrt{3}} \mathbf{v}$ is a unit vector pointing in the opposite direction. So the answer is

$$
-\frac{1}{2 \sqrt{3}} \mathbf{v}=\left(-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right) .
$$

Exercise 5 Exercise 3a and 3b in chapter 3.2 of Elementary Linear Algebra.

We have

$$
\|\mathbf{u}+\mathbf{v}\|=\sqrt{(2+1)^{2}+(-2-3)^{2}+(3+4)^{2}}=\sqrt{83} \approx 9.1
$$

and

$$
\|\mathbf{u}\|+\|\mathbf{v}\|=\sqrt{2^{2}+(-2)^{2}+3^{2}}+\sqrt{1^{2}+(-3)^{2}+4^{2}}=\sqrt{17}+\sqrt{26} \approx 9.2
$$

Exercise 6 Exercise 11b in chapter 3.2 of Elementary Linear Algebra.
The distance between \mathbf{u} and \mathbf{v} is given by

$$
\|\mathbf{u}-\mathbf{v}\|=\sqrt{(0+3)^{2}+(-2-2)^{2}+(-1-4)^{2}+(1-4)^{2}}=\sqrt{59}
$$

The cosine of the angle is given by $\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}$. We calculate

$$
\begin{aligned}
\mathbf{u} \cdot \mathbf{v} & =0 \cdot(-3)+(-2) \cdot 2+(-1) \cdot 4+1 \cdot 4=-4 \\
\|\mathbf{u}\| & =\sqrt{0^{2}+(-2)^{2}+(-1)^{2}+1^{2}}=\sqrt{6} \\
\|\mathbf{v}\| & =\sqrt{(-3)^{2}+2^{2}+4^{2}+4^{2}}=3 \sqrt{5} \\
\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|} & =\frac{-4}{\sqrt{6} \cdot 3 \sqrt{5}}=-\frac{4}{3 \sqrt{30}} .
\end{aligned}
$$

Since this is negative it means that the angle between \mathbf{u} and \mathbf{v} is obtuse.

Exercise 7 Exercise 15 in chapter 3.2 of Elementary Linear Algebra.
In (a) u is a vector and $(\mathbf{v} \cdot \mathbf{w})$ is a scalar. The dot-product is taken between vectors, so this doesnt make sense.

In (c) $\mathbf{u} \cdot \mathbf{v}$ is a scalar. We don't take the norm of a scalar, so this doesnt make sense.
The remaining two expressions make sense.
Exercise 8 Exercise 17a in chapter 3.2 of Elementary Linear Algebra.

Cauchy-Schwarz says that $|\mathbf{u} \cdot \mathbf{v}| \leq\|\mathbf{u}\|\|\mathbf{v}\|$. We calculate:

$$
\begin{aligned}
|\mathbf{u} \cdot \mathbf{v}| & =|-3 \cdot 2+1 \cdot(-1)+0 \cdot 3|=7 \\
\|\mathbf{u}\| & =\sqrt{(-3)^{2}+1^{2}+0^{2}}=\sqrt{10} \\
\|\mathbf{v}\| & =\sqrt{2^{2}+(-1)^{2}+3^{2}}=\sqrt{14} \\
\|\mathbf{u}\|\|\mathbf{v}\| & =\sqrt{140} \approx 11.8
\end{aligned}
$$

We see that the inequality holds, since $7 \leq 11.8$.

